IMERYS GLOMEL

Hameau de Guerphales 22110 GLOMEL

RAPPORT BILAN

Evaluation de l'état écologique du ruisseau de Crazius à Glomel (22)

Etude bilan des inventaires biologiques et des analyses physico-chimiques réalisés sur le cours du Crazius entre 2019 à 2023.

Mars 2024

j.blemus@biometra.fr

Informations relatives au document

 $Titre \ du \ document : Evaluation \ de \ l'état \ \'ecologique \ du \ ruisseau \ de \ Crazius \ \grave{a} \ Glomel \ (22)-Rapport \ bilan$

 $R\'ef\'erence / \ Version: OP0020324 - V3$

Rédacteur(s): Jérémie Blémus pour le bureau d'études Biometra

Références du maitre d'ouvrage et/ou du mandataire

Affaire suivie par: Quentin Goutaloy pour IMERYS Glomel

Fonction : Chargé de missions environnement

Adresse: Guerphales 22110 Glomel

E-mail / Tel: quentin.goutaloy@imerys.com / 02 96 57 70 99

Références du prestataire

Opération réalisée et suivie par : Jérémie Blémus

Fonction: Hydrobiologiste - gérant du bureau d'études Biometra

Adresse: Ploërmel - 56

E-mail / Tel : <u>j.blemus@biometra.fr</u> / +33(0)6 98 69 77 68

Cachet de l'entreprise

BIOMETRA

14 rue Brizeux – 56800 Ploërmel Tel: +33(0)6 98 69 77 68

Siret 98301277400011 - APE 7112B

Sommaire

1	(CONTEXTE ET OBJECTIF DE L'ETUDE	
	1.1	ACTIVITE D'IMERYS GLOMEL]
	1.2	Enjeux environnementaux (eaux superficielles)	
	1.3	SITES D'ETUDE	
	1.4	Prestations objet du suivi	
2	Ŧ	ETUDE DES PEUPLEMENTS D'INVERTEBRES AQUATIQUES	
_			
	2.1	ANALYSE INTERANNUELLE - STATION « CRA_AM »	
	2.2	ANALYSE INTERANNUELLE - STATION « CRA_AV »	
	2.3	ANALYSE INTERANNUELLE - STATION « CRA_RES_AM »	
	2.4	ANALYSE INTERANNUELLE - STATION « CRA_RES_AV »	
	2.5	ANALYSE INTERSTATIONNELLE DIACHRONIQUE - CRAZIUS	
	2.6	Interpretation des resultats	
3	I	ETUDE DES CORTEGES DIATOMIQUES	2]
	3.1	ANALYSE INTERANNUELLE – STATION « CRA_AM »	2]
	3.2	ANALYSE INTERANNUELLE – STATION « CRA_AV »	25
	3.3	ANALYSE INTERANNUELLE – STATION « CRA_RES_AM »	25
	3.4	ANALYSE INTERANNUELLE – STATION « CRA_RES_AV »	27
	3.5	ANALYSE INTERSTATIONNELLE DIACHRONIQUE - CRAZIUS	29
	3.6	Interpretation des resultats	3]
4	I	ETUDE DES PEUPLEMENTS PISCICOLES	32
5	A	ANALYSE DES SEDIMENTS	34
	5.1	Analyse granulometrique	34
5	5.1 5.2	ANALYSE GRANULOMETRIQUE	34 35
	5.1 5.2	Analyse granulometrique	34 35
5	5.1 5.2	ANALYSE GRANULOMETRIQUE	34 35
5	5.1 5.2	ANALYSE GRANULOMETRIQUEANALYSE PHYSICO-CHIMIE DES EAUX	34 35 37
5	5.1 5.2 6.1	ANALYSE GRANULOMETRIQUE ANALYSE PHYSICO-CHIMIE DES EAUX ANALYSE DE LA PHYSICO-CHIMIE DES EAUX	34 35 37 37
5	5.1 5.2 6.1 6.2	ANALYSE GRANULOMETRIQUE ANALYSE PHYSICO-CHIMIE DES EAUX ANALYSE DE LA PHYSICO-CHIMIE DES EAUX ANALYSE DU PH. ANALYSE DE LA CONDUCTIVITE	34 35 37 37 38
5	5.1 5.2 6.1 6.2 6.3	ANALYSE GRANULOMETRIQUE ANALYSE PHYSICO-CHIMIE DES EAUX ANALYSE DE LA PHYSICO-CHIMIE DES EAUX ANALYSE DU PH ANALYSE DE LA CONDUCTIVITE ANALYSE DE LA DEMANDE CHIMIQUE EN OXYGENE	34 35 37 38 38
5	5.1 5.2 6.1 6.2 6.3 6.4	ANALYSE GRANULOMETRIQUE ANALYSE PHYSICO-CHIMIE DES EAUX ANALYSE DE LA PHYSICO-CHIMIE DES EAUX ANALYSE DU PH ANALYSE DE LA CONDUCTIVITE ANALYSE DE LA DEMANDE CHIMIQUE EN OXYGENE ANALYSE DES NITRATES ANALYSE DU PHOSPHORE TOTAL ANALYSE DES MATIERES EN SUSPENSIONS	35 37 38 38 38 39
5	5.1 5.2 6.1 6.2 6.3 6.4 6.5	ANALYSE GRANULOMETRIQUE ANALYSE PHYSICO-CHIMIE DES EAUX ANALYSE DE LA PHYSICO-CHIMIE DES EAUX ANALYSE DU PH. ANALYSE DE LA CONDUCTIVITE. ANALYSE DE LA DEMANDE CHIMIQUE EN OXYGENE. ANALYSE DES NITRATES ANALYSE DU PHOSPHORE TOTAL	35 37 38 38 38 39
5	5.1 5.2 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	ANALYSE GRANULOMETRIQUE ANALYSE PHYSICO-CHIMIE DES EAUX ANALYSE DE LA PHYSICO-CHIMIE DES EAUX ANALYSE DU PH. ANALYSE DE LA CONDUCTIVITE ANALYSE DE LA DEMANDE CHIMIQUE EN OXYGENE ANALYSE DES NITRATES ANALYSE DU PHOSPHORE TOTAL ANALYSE DES MATIERES EN SUSPENSIONS ANALYSE DE L'ALUMINIUM ANASYSE DU FER	35 35 36 38 39 39 40
5	5.1 5.2 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	ANALYSE GRANULOMETRIQUE ANALYSE PHYSICO-CHIMIE DES EAUX ANALYSE DE LA PHYSICO-CHIMIE DES EAUX ANALYSE DU PH. ANALYSE DE LA CONDUCTIVITE ANALYSE DE LA DEMANDE CHIMIQUE EN OXYGENE ANALYSE DES NITRATES ANALYSE DU PHOSPHORE TOTAL ANALYSE DES MATIERES EN SUSPENSIONS ANALYSE DE L'ALUMINIUM ANASYSE DU FER ANALYSE DU MANGANESE	34353638383939404142
5	5.1 5.2 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	ANALYSE GRANULOMETRIQUE ANALYSE PHYSICO-CHIMIE DES EAUX ANALYSE DE LA PHYSICO-CHIMIE DES EAUX ANALYSE DU PH. ANALYSE DE LA CONDUCTIVITE ANALYSE DE LA DEMANDE CHIMIQUE EN OXYGENE ANALYSE DES NITRATES ANALYSE DU PHOSPHORE TOTAL ANALYSE DES MATIERES EN SUSPENSIONS ANALYSE DE L'ALUMINIUM ANASYSE DU FER ANALYSE DU MANGANESE	34353638383939404142
5	5.1 5.2 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10	ANALYSE GRANULOMETRIQUE ANALYSE PHYSICO-CHIMIE DES EAUX ANALYSE DE LA PHYSICO-CHIMIE DES EAUX ANALYSE DU PH. ANALYSE DE LA CONDUCTIVITE ANALYSE DE LA DEMANDE CHIMIQUE EN OXYGENE ANALYSE DES NITRATES ANALYSE DU PHOSPHORE TOTAL ANALYSE DES MATIERES EN SUSPENSIONS ANALYSE DE L'ALUMINIUM ANASYSE DU FER ANALYSE DU MANGANESE	34 35 36 37 38 38 39 40 41 41 42 42
6	5.1 5.2 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10	ANALYSE GRANULOMETRIQUE ANALYSE PHYSICO-CHIMIE DES EAUX ANALYSE DE LA PHYSICO-CHIMIE DES EAUX ANALYSE DU PH. ANALYSE DE LA CONDUCTIVITE. ANALYSE DE LA DEMANDE CHIMIQUE EN OXYGENE. ANALYSE DES NITRATES. ANALYSE DU PHOSPHORE TOTAL. ANALYSE DES MATIERES EN SUSPENSIONS. ANALYSE DE L'ALUMINIUM. ANASYSE DU FER. ANALYSE DU MANGANESE.	34353738383940414244

1 Contexte et objectif de l'étude

Le bureau d'études Biometra a été mandaté par la société Imerys Glomel pour réaliser l'étude bilan des suivis écologiques opérés sur le ruisseau de Crazius ces cinq dernières années (2019, 2020, 2021, 2022 et 2023). Le ruisseau de Crazius décrit en 1.3 est, de façon indirecte, le milieu naturel récepteur du rejet Imerys. Cette étude bilan concerne l'article 9.2.4 « surveillance du milieu récepteur » de l'arrêté préfectoral portant autorisation d'une installation classée pour la protection de l'environnement du 3 août 2018.

1.1 Activité d'Imerys Glomel

La carrière Imerys de Glomel exploite les schistes à andalousite à ciel ouvert et à sec depuis 1970. Imerys Glomel représente le seul site de production d'andalousite en France et en Europe et assure environ 20% de sa production mondiale.

Les matériaux extraits sont dans un premier temps abattu à l'explosif. Par la suite, leur devenir varie en fonction de leur teneur en minerai d'andalousite :

- → Les stériles d'extraction, pauvres en andalousite, sont directement stockés en verse.
- → Le minerai valorisable est acheminé en usine pour être traité.

Les traitements du minerai en usine génèrent deux types de stériles : des stériles humides stockés en fosse et des stériles secs qui sont stockés sur une verse.

Au stade actuel de l'exploitation de la carrière, mars 2024, le site comporte une fosse n°1 comblée, une fosse n°2 en cours de comblement, une fosse n°3 en cours d'exploitation et des zones de stockage des stériles (remblais des résidus de l'exploitation). Imerys prévoit un manque d'accès au minerai pour ces prochaines années dans la 3ème fosse en cours d'exploitation. C'est dans ce contexte, qu'IMERYS a demandé l'ouverture et l'exploitation d'une nouvelle fosse sur le site de Glomel en 2024 (fosse n°4 d'une surface d'environ 10 ha) avec l'extension limitée des verses à stériles. Il a également été demandé une prolongation de la durée d'exploitation du site pour 11 ans supplémentaires, jusqu'en 2047 (avec une période de remise en état du site sur les 5 dernières années).

Pour les années à venir, Imerys prévoit une exploitation qui se poursuivra au même rythme que les précédentes. Le site d'Imerys Glomel rejette de l'ordre de 1 300 000 m3 d'eau par an. Ce volume est variable en fonction du volume de précipitation et dépend des valeurs limites de rejet autorisées.

L'un des nombreux enjeux environnement liés à l'activité d'Imerys est son incidence sur les eaux superficielles qui bordent la carrière.

1.2 Enjeux environnementaux (eaux superficielles)

La carrière est située entre les bassins versants du Blavet et de l'Ellé. Le réseau hydrographique qui jouxte le site d'exploitation est relativement dense et ramifié avec des relations étroites entre les eaux souterraines et les eaux de surface. Notons également la présence de zones humides alimentées par les écoulements souterrains et superficiels. La sensibilité de l'écoulement des eaux souterraines et superficielles est donc forte.

Toutes les eaux circulant sur le site de la carrière sont collectées, traitées puis rejetées, au sud du site, dans le ruisseau du Kergroaz (= Guerphales) qui se jette dans l'étang du Crazius, élargissement du ruisseau éponyme qui lui-même rejoint le cours de l'Ellé 7 km en aval après avoir traversé une réserve naturelle¹. Le cours du Crazius, l'étang du Moulin de Crazius et la réserve naturelle font partie du site Natura 2000 de la rivière Ellé.

L'exploitation d'une carrière à ciel ouvert relève de la nomenclature des Installations classées pour la Protection de l'Environnement (ICPE). La nature des matériaux stockés (en fosse ou en remblais) sur le site d'exploitation peuvent avoir un effet sur les écosystèmes aquatiques situés autour du site. De ce fait, afin de caractériser l'impact écologique éventuel lié à l'exploitation de la carrière Imerys Glomel, des analyses et des études spécifiques ont été menées autour du site d'exploitation. Il est important d'étudier la compatibilité de l'activité d'Imerys avec les milieux aquatiques proches qui sont directement ou indirectement récepteurs du rejet et donc sous son influence.

¹ Réserve naturelle régionales des Landes de Lan Bern et de Magoar Penvern

1.3 Sites d'étude

L'article 9.2.4 « surveillance du milieu récepteur » de l'arrêté préfectoral du 3 août 2018 impose un suivi écologique du ruisseau de Crazius sur 5 ans. Quatre stations positionnées au fil du Crazius sont concernées par l'étude :

- → Amont / Aval du point de rejet
- → Amont / Aval de la réserve naturelle de Magoar-Pern Vern

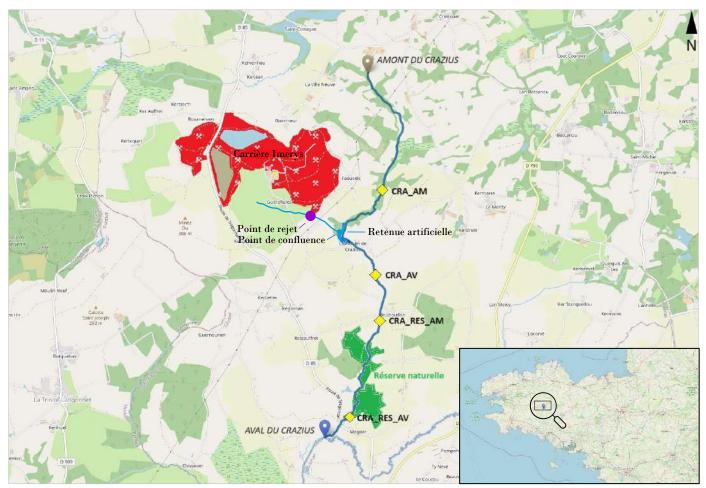


Figure 1 : Carte de localisation des sites d'études du Crazius

Les quatre stations étudiées sur Le Crazius sont :

→ La station « CRA_AM » est la station de référence située sur ruisseau du Crazius à environ 710 mètres en amont de la retenue artificielle (lieu-dit : Moulin de Crazius) qui reçoit les eaux traitées provenant de la carrière Imerys.

Coordonnés GPS (Lambert 93) : X : 225520 / Y : 6806720

ightarrow La station « CRA_AV » est située sur le cours du Crazius à environ 650 mètres en aval de la retenue artificielle et donc du point de rejet Imerys.

Coordonnés GPS (Lambert 93) : X : 225367 / Y : 6805449

- → La station « CRA_RES_AM » est située sur le cours du Crazius à environ 620 mètres en aval de la station précédente. Cette station est localisée en amont immédiat de la réserve naturelle. Coordonnés GPS (Lambert 93) : X : 225356 / Y : 6804896
- → La station « CRA_RES_AV » est située sur le ruisseau de Crazius à environ 1600 mètres en aval de la station « CRA_RES_AM ». Cette station est localisée en aval immédiat de la réserve naturelle Coordonnés GPS (Lambert 93) : X : 224756 / Y : 6803565

1.3.1 Le Crazius amont rejet « CRA_AM »

Références de l'entité hydrographique

Cours d'eau : Crazius

Code CARTHAGE 2017: J4704900

Code TOPAGE 2023: 04C0000002000879470

Longueur du cours principal : 6,57 km

Cours d'eau confluent : Ellé

Références de la station

Denoménation : La Crazius à Glomel

LB. Station: CRA_AM

Code station:

Hydroécorégion: Massif Armoricain Ouest

Régime hydrologique annuel: Pluvial

Rang de Strahler:

Altitude: 196 m

Typo. Nationnale: TP12B

Localisation du site d'étude

Commune / Dépt.: Glomel / 22

Code INSEE: 22110

N° Parcelle majoritaire (Rive): 0G0713 (RD)

Coordonnées X aval (L.93): 225520 **Coordonnées Y aval (L.93):** 6806720

Figure 3 : Localisation site « CRA_AM » (IGN)

Figure 2 : Localisation site « CRA_AM » (Orthophoto)

Photo 1: Vue site « CRA_AM » depuis l'aval (2022)

Photo 2: Vue site « CRA_AM » depuis l'amont (2022)

1.3.2 Le Crazius aval rejet « CRA_AV »

Références de l'entité hydrographique

Cours d'eau : Crazius

Code CARTHAGE 2017: J4704900

Code TOPAGE 2023: 04C0000002000879470

Longueur du cours principal : 6,57 km

Cours d'eau confluent : Ellé

Références de la station

Denoménation : La Crazius à Glomel

LB. Station: CRA_AV

Code station:

Hydroécorégion: Massif Armoricain Ouest

Régime hydrologique annuel: Pluvial

Rang de Strahler:

Altitude: 186 m

Typo. Nationnale: TP12B

Localisation du site d'étude

Commune / Dépt. : Glomel / 22

Code INSEE: 22110

N° Parcelle majoritaire (Rive): YP0230 (RD)

Coordonnées X aval (L.93): 225367 **Coordonnées Y aval (L.93):** 6805449

Figure 4 : Localisation site $\ll CRA_AV \gg (IGN)$

Figure 5 : : Localisation site « CRA_AV » (orthophoto)

Photo 3: Vue site « CRA_AV » depuis l'aval (2022)

Photo 4: Vue site « CRA-AV » depuis l'amont (2022)

1.3.3 Le Crazius amont réserve « CRA_RES_AM »

Références de l'entité hydrographique

Cours d'eau : Crazius

Code CARTHAGE 2017: J4704900

Code TOPAGE 2023: 04C0000002000879470

Longueur du cours principal : 6,57 km

Cours d'eau confluent : Ellé

Références de la station

Denoménation : La Crazius à Glomel

LB. Station: CRA_RES_AM

Code station:

Hydroécorégion: Massif Armoricain Ouest

Régime hydrologique annuel: Pluvial

Rang de Strahler:

Altitude: 184 m

Typo. Nationnale: TP12B

Localisation du site d'étude

Commune / Dépt. : Glomel / 22

Code INSEE: 22110

N° Parcelle majoritaire (Rive): XO0022 (RD)

Coordonnées X aval (L.93): 225356 **Coordonnées Y aval (L.93):** 6804896

Figure 6 : Localisation site « CRA_R_AM » (IGN)

Figure 7: Localisation site « CRA_R_AM » (orthophoto)

Photo 5: Vue site « CRA_R_AM » depuis l'aval (2022)

Photo 6: Vue site « CRA_R_AM » depuis l'amont (2022)

1.3.4 Le Crazius aval réserve « CRA_RES_AV »

Références de l'entité hydrographique

Cours d'eau : Crazius

Code CARTHAGE 2017: J4704900

Code TOPAGE 2023: 04C0000002000879470

Longueur du cours principal : 6,57 km

Cours d'eau confluent : Ellé

Références de la station

Denoménation : La Crazius à Glomel

LB. Station: CRA_RES_AV

Code station:

Hydroécorégion: Massif Armoricain Ouest

Régime hydrologique annuel: Pluvial

Rang de Strahler:

Altitude: 180 m

Typo. Nationnale: TP12B

Localisation du site d'étude

Commune / Dépt.: Glomel / 22

Code INSEE: 22110

N° Parcelle majoritaire (Rive): X00076 (RD)

Coordonnées X aval (L.93): 224756 **Coordonnées Y aval (L.93):** 6803565

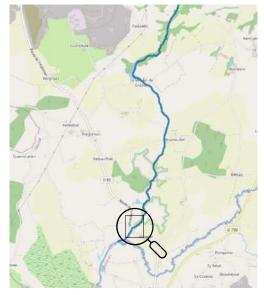


Figure 8 : Localisation site « CRA_R_AV » (IGN)

 $Figure 9: Localisation site \ll CRA_R_AV \gg (orthophoto)$

Photo 7: Vue site « CRA_RES_AV » depuis l'aval (2022)

Photo 8: Vue site « CRA_RES_AV » depuis l'amont (2022)

6

1.4 Prestations objet du suivi

L'article 9.2.4 « surveillance du milieu récepteur » de l'arrêté préfectoral du 3 août 2018 impose un suivi écologique du ruisseau de Crazius sur 5 ans ($2019 \rightarrow 2023$). Ce suivi concerne deux compartiments écologiques : la physico-chimie et la biologie. Les prestations demandées sont :

- → Pour le compartiment physico-chimique :
 - Des analyses sédimentaires annuelles pour les métaux suivants: Fer, Aluminium, Manganèse, Sulfates. Une analyse granulométrique des sédiments est également demandée. Un total de 5 analyses sédimentaires a été réalisé sur les quatre stations du Crazius entre 2019 et 2023.
 - Des analyses trimestrielles de la physico-chimie des eaux pour les paramètres suivants : pH, MES, DCO, Fer, Aluminium, Manganèse, Sulfates, Nitrates et Phosphore. Quatre mesures par an ont été réalisées sur les quatre stations du Crazius soit un total de 20 analyses par station entre 2019 et 2023.
- → Pour le compartiment biologique (suivi annuel) :
 - L'étude des peuplements d'invertébrés aquatiques (IBG-DCE / I2M2) suivant la norme NF T90-333 (prélèvement des macro-invertébrés aquatiques en rivières peu profondes 2016) et NF T90-388 (analyse d'échantillons contenant des macro-invertébrés de cours d'eau, canaux et plans d'eau 2020).
 - L'étude des cortèges diatomiques (IBD / IPS) suivant la norme NF T90-354 (détermination de l'indice biologique diatomées 2007).
 - L'étude des peuplements piscicoles ciblée sur la truite fario (Salmo truita).

Le tableau ci-dessous regroupe les différentes prestations réalisées dans le cadre du suivi écologique du Crazius entre 2019 et 2023:

Tableau 1 : Périodicité des relevés biologiques et physico-chimique sur le Crazius

	<u>2019</u>		<u>2020</u>		<u>2021</u>		2022		<u>2023</u>											
PC Sédiments	Juin		Juillet		Juillet			Juillet			Juillet									
PC Eaux	Mars	Juin	Sept.	Déc.	Fev.	Mai	Août	Nov.	Fev.	Mai	Août	Nov.	Janv.	Mai	Août	Déc.	Janv.	Mai	Août	Déc.
Invertébrés	Juin		Juillet		Juillet		Juillet		Juillet											
Diatomées	Juin		Juillet		Juillet		Juillet		Juillet											
Poissons		Septe	mbre			Septe	mbre			Septe	mbre			*	:			*	:	

^{*}Inventaires non réalisés en raison d'un étiage sévère en 2022 et de l'indisponibilité de la FDAAPPMA-22 en septembre 2023 pour réaliser les inventaires piscicoles du Crazius

[➤] Le présent rapport présente le bilan des résultats obtenus sur les quatre stations du Crazius ces 5 dernières années (2019, 2020, 2021, 2022 et 2023).

2 Etude des peuplements d'invertébrés aquatiques

L'ensemble des listes faunistiques (données brutes) sont annexées à ce rapport.

2.1 Analyse interannuelle - station « CRA_AM »

Le tableau ci-dessous présente une synthèse des résultats indiciels obtenus entre 2019 et 2023 sur la station du Crazius située en amont du point de rejet.

INDICES BIOLOGIQUES	<u>2019</u>	<u>2020</u>	<u>2021</u>	2022	<u>2023</u>
$\mathbf{I2M2}\;(EQR)$	0,71	0,73	0,65	0,68	0,54
Diversité I2M2 (EQR)	0,51	0,62	0,45	0,48	0,33
ASPT I2M2 (EQR)	0,88	0,93	0,91	0,89	1,00
Ooviviparité I2M2 (EQR)	0,77	0,80	0,72	0,81	0,54
Polyvoltinisme I2M2 (EQR)	0,87	0,81	0,69	0,81	0,53
Richesse I2M2 (EQR)	0,39	0,35	0,37	0,27	0,12
IBG-DCE /20 EQR	18 1,06	16 0,94	16 0,94	14 0,81	13 0,75
Variété taxinomique IBG	33	34	33	27	24
GFI Taxon	9 (Chloroperlidae)	7 (Leuctridae)	7 (Leuctridae)	7 (Leuctridae)	7 (Leuctridae)
Robustesse IBG $ 20 $ EQR	15 0,88	16 0,94	15 0,88	14 0,81	13 0,75
Coef. d'habitabilité (/20)	14,00	14,00	14,03	14,03	14,44

Tableau 2 : Résultats des indices biologiques invertébrés obtenus sur la station « CRA_AM »

L'indice biologique en vigueur (I2M2) classe la station « CRA_AM » à minima en bon état biologique entre 2019 et 2023 d'après l'arrêté ministériel du 9 octobre 2023 modifiant celui du 25 janvier 2010.

Le tableau ci-dessous présente une synthèse des résultats d'indices caractérisant la structure des peuplements d'invertébrés échantillonnés entre 2019 et 2023 sur la station du Crazius située en amont du point de rejet.

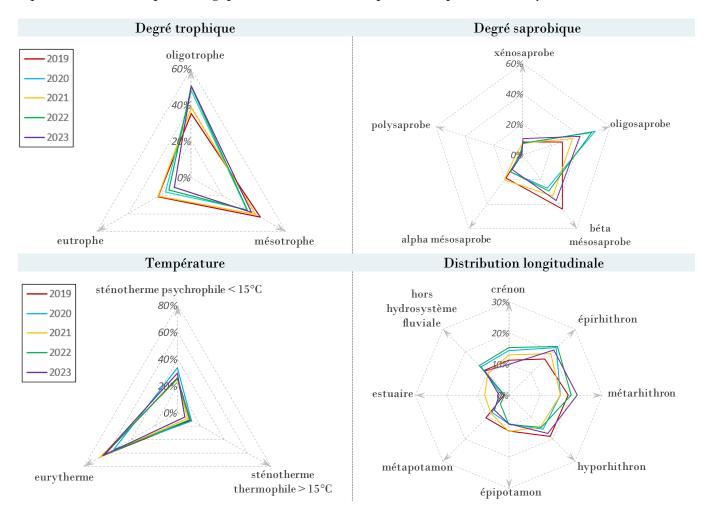
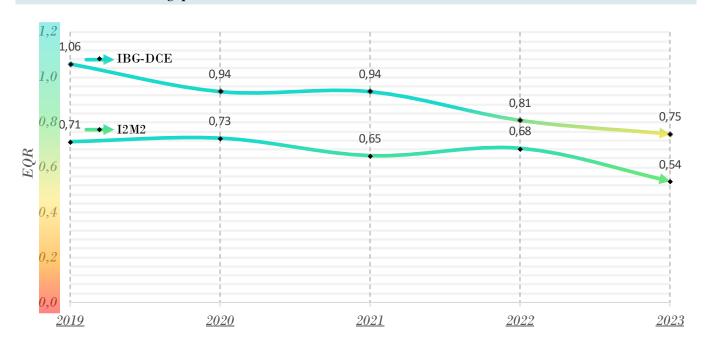

INDICES DE STRUCTURE	<u>2019</u>	<u>2020</u>	<u>2021</u>	2022	<u>2023</u>
Diversité de Shannon (H')	3,29	3,28	3,41	3,25	2,65
Richesse Taxinomique (S)	41	39	40	35	28
Equitabilité de Piélou $(J/1)$	0,61	0,62	0,64	0,63	0,55
Diversité de Hill $(Hill/1)$	0,77	0,75	0,75	0,76	0,71
Dominance de Simpson (D/I)	0,16	0,15	0,13	0,16	0,24
Proportion EPT Ni. \mid (%)	38,1%	27,8%	14,9%	19,9%	10,3%
Proportion GOLD Ni. (%)	37,9%	43,7%	40,5%	40,1%	65,9%
Taxon dominant (%)	Chironomidae - 29%	Chironomidae - 27%	Simuliidae - 22%	Chironomidae - 29%	Chironomidae - 42%
Abondance (Ni)	3257	2510	3035	2142	2414

Tableau 3 : Résultats des indices de structure des peuplements obtenus sur la station « CRA_AM »


8

Les traits écologiques présentés ci-dessous ont été choisi en fonction du contexte de l'étude. Seuls les taxons pour lesquels les caractéristiques écologiques sont connus ont été pris en compte dans l'analyse.

Evolution de l'état biologique de la station « CRA_AM » entre 2019 et 2023 selon l'IBG-DCE et l'I2M2

 $Figure~10: Evolution~des~indices~IBG~et~I2M2~sur~la~station~a~CRA_AM~»~entre~2019~et~2023~ave la~station~ave la~station~ave$

2.2 Analyse interannuelle - station « CRA_AV »

Le tableau ci-dessous présente une synthèse des résultats indiciels obtenus entre 2019 et 2023 sur la station du Crazius située en aval du point de rejet.

INDICES BIOLOGIQUES	<u>2019</u>	<u>2020</u>	<u>2021</u>	<u>2022</u>	<u>2023</u>
I2M2 (EQR)	0,38	0,53	0,61	0,51	0,60
Diversité I2M2 (EQR)	0,09	0,36	0,46	0,11	0,44
ASPT I2M2 (EQR)	0,43	0,64	0,67	0,69	0,74
Ooviviparité I2M2 (EQR)	0,45	0,60	0,64	0,54	0,63
Polyvoltinisme I2M2 (EQR)	0,52	0,73	0,79	0,76	0,77
Richesse I2M2 (EQR)	0,33	0,20	0,41	0,27	0,31
IBG-DCE /20 EQR	16 0,94	13 0,75	17 1	15 0,88	16 0,94
Variété taxinomique IBG	33	24	34	29	29
GFI Taxon	7 (Leuctridae)	7 (Leuctridae)	8 (Brachycentridae)	7 (Leuctridae)	8 (Brachycentridae)
Robustesse IBG $\ /20 \mid EQR$	15 0,81	13 0,75	16 0,94	13 0,75	14 0,82
Coef. d'habitabilité (/20)	14,39	17,08	16,29	16,43	16,43

Tableau 4 : Résultats des indices biologiques invertébrés obtenus sur la station « CRA_AV »

L'indice biologique en vigueur (I2M2) classe la station « CRA_AV » en bon état biologique entre 2020 et 2023. Seule l'année 2019 ressort dans un état biologique inferieur (classe moyenne) d'après l'arrêté ministériel du 9 octobre 2023 modifiant celui du 25 janvier 2010.

Le tableau ci-dessous présente une synthèse des résultats d'indices caractérisant la structure des peuplements d'invertébrés échantillonnés entre 2019 et 2023 sur la station du Crazius située en aval du rejet.

INDICES DE STRUCTURE	<u>2019</u>	<u>2020</u>	<u>2021</u>	2022	<u>2023</u>
Diversité de Shannon (H')	1,75	2,68	2,98	2,18	2,84
${\bf Richesse\ Taxinomique\ }(S)$	38	32	42	35	37
Equitabilité de Piélou (J/I)	0,33	0,54	0,55	0,42	0,55
Diversité de Hill $(Hill/1)$	0,64	0,72	0,77	0,67	0,72
Dominance de Simpson $(D/1)$	0,49	0,24	0,23	0,34	0,21
Proportion EPT Ni. (%)	10,2%	35,3%	53,8%	32,5%	24,3%
Proportion GOLD Ni. (%)	86,1%	52,8%	30,0%	59,8%	56,8%
				_	
Taxon dominant (%)	Potamopyrgus - 68%	Potamopyrgus - 42%	Leuctra - 43%	Potamopyrgus - 50%	Potamopyrgus - 34%
Abondance (Ni)	5747	2318	3168	2729	2717

Tableau 5 : Résultats des indices de structure des peuplements obtenus sur la station « CRA_AV »

Les traits écologiques présentés ci-dessous ont été choisi en fonction du contexte de l'étude. Seuls les taxons pour lesquels les caractéristiques écologiques sont connus ont été pris en compte dans l'analyse.

Evolution de l'état biologique de la station « CRA_AV » entre 2019 et 2023 selon l'IBG-DCE et l'I2M2

 $Figure~11: Evolution~des~indices~IBG~et~I2M2~sur~la~station «~CRA_AV~ »$

11

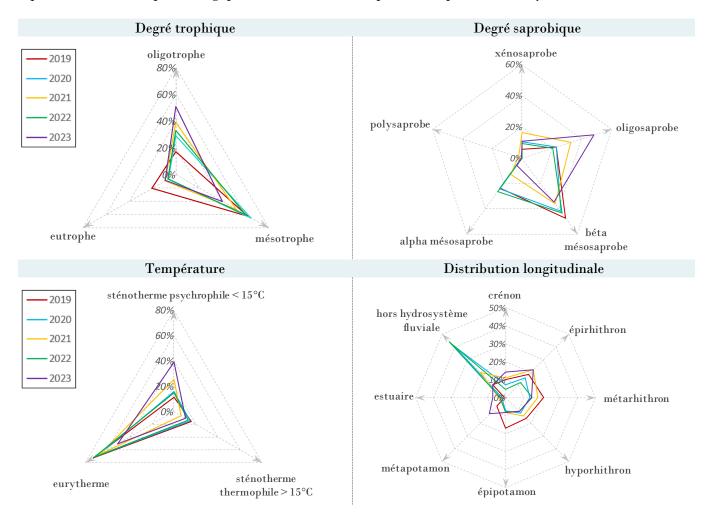
2.3 Analyse interannuelle - station « CRA_RES_AM »

Le tableau ci-dessous présente une synthèse des résultats indiciels obtenus entre 2019 et 2023 sur la station du Crazius située en amont de la réserve naturelle.

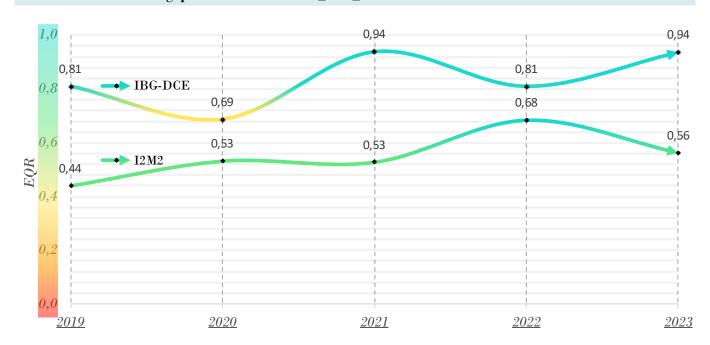
INDICES BIOLOGIQUES	<u>2019</u>	2020	<u>2021</u>	<u>2022</u>	<u>2023</u>
$\mathbf{I2M2}\;(EQR)$	0,44	0,53	0,53	0,68	0,56
Diversité I2M2 (EQR)	0,19	0,46	0,59	0,48	0,63
ASPT I2M2 (EQR)	0,76	0,70	0,47	0,89	0,81
Ooviviparité I2M2 (EQR)	0,28	0,59	0,52	0,81	0,47
Polyvoltinisme I2M2 (EQR)	0,64	0,67	0,66	0,81	0,50
Richesse I2M2 (EQR)	0,22	0,10	0,37	0,27	0,37
IBG-DCE /20 <i>EQR</i>	14 0,81	12 0,69	16 0,94	14 0,81	16 0,94
Variété taxinomique IBG	25	20	33	27	29
GFI Taxon	7 (Leuctridae)	7 (Leuctridae)	7 (Leuctridae)	7 (Leuctridae)	8 (Brachycentridae)
Robustesse IBG /20 EQR	12 0,69	11 0,63	15 0,88	14 0,81	14 0,82
Coef. d'habitabilité (/20)	13,66	13,66	13,66	14,03	13,66

Tableau 6 : Résultats des indices biologiques invertébrés obtenus sur la station « CRA_RES_AM »

Malgré une qualité habitationnelle moins favorable à l'accueil des invertébrés benthiques que les stations précédentes, l'indice biologique en vigueur (I2M2) classe la station « CRA_RES_AM » à minima en bon état biologique entre 2019 et 2023 d'après l'arrêté ministériel du 9 octobre 2023 modifiant celui du 25 janvier 2010.


Le tableau ci-dessous présente une synthèse des résultats d'indices caractérisant la structure des peuplements d'invertébrés échantillonnés entre 2019 et 2023 sur la station du Crazius située en amont de la réserve naturelle.

INDICES DE STRUCTURE	<u>2019</u>	<u>2020</u>	<u>2021</u>	2022	<u>2023</u>
Diversité de Shannon (H')	2,32	2,95	3,14	2,51	3,54
Richesse Taxinomique (S)	32	27	40	33	41
Equitabilité de Piélou $(J/1)$	0,46	0,62	0,59	0,50	0,66
Diversité de Hill $(Hill/1)$	0,74	0,74	0,77	0,73	0,81
Dominance de Simpson $(D/1)$	0,38	0,20	0,19	0,30	0,15
			T		
Proportion EPT Ni. (%)	13,8%	47,9%	39,5%	24,6%	42,4%
Proportion GOLD Ni. (%)	75,7%	26,7%	37,7%	57,0%	24,3%
			1		
Taxon dominant (%)	Potamopyrgus - 59%	Leuctra - 40%	Leuctra - 35%	Potamopyrgus - 49%	Leuctra - 31%
Abondance (Ni)	3379	1786	2321	1629	1076


Tableau 7 : Résultats des indices de structure des peuplements obtenus sur la station « CRA_RES_AM »

Les traits écologiques présentés ci-dessous ont été choisi en fonction du contexte de l'étude. Seuls les taxons pour lesquels les caractéristiques écologiques sont connus ont été pris en compte dans l'analyse.

Evolution de l'état biologique de la station « CRA_RES_AM » entre 2019 et 2023 selon l'IBG-DCE et l'I2M2

 $Figure~12: Evolution~des~indices~IBG~et~I2M2~sur~la~station~«~CRA_RES_AM~»$

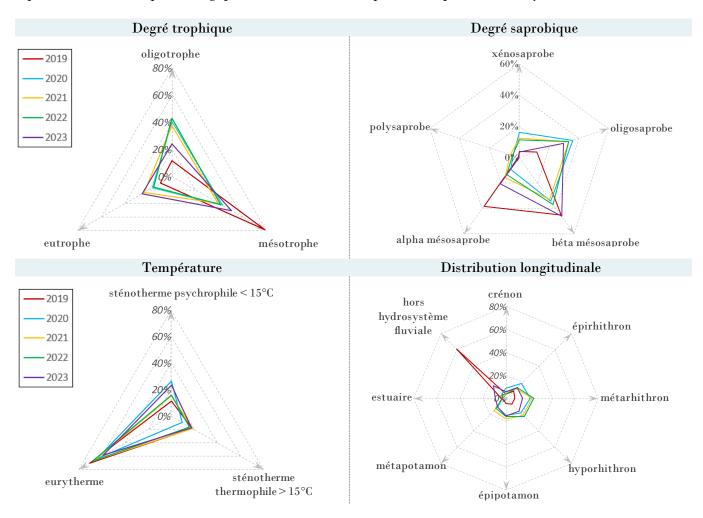
2.4 Analyse interannuelle - station « CRA_RES_AV »

Le tableau ci-dessous présente une synthèse des résultats indiciels obtenus entre 2019 et 2023 sur la station du Crazius située en aval de la réserve naturelle.

INDICES BIOLOGIQUES	<u>2019</u>	2020	<u>2021</u>	2022	<u>2023</u>
I2M2 (EQR)	0,47	0,65	0,40	0,51	0,46
Diversité I2M2 (EQR)	0,24	0,57	0,28	0,63	0,30
ASPT I2M2 (EQR)	0,67	0,86	0,41	0,58	0,52
Ooviviparité I2M2 (EQR)	0,43	0,67	0,51	0,55	0,52
Polyvoltinisme I2M2 (EQR)	0,54	0,75	0,54	0,53	0,53
Richesse I2M2 (EQR)	0,39	0,24	0,18	0,18	0,35
IBG-DCE /20 EQR	16 0,94	14 0,81	13 0,75	14 0,81	16 0,94
Variété taxinomique IBG	35	27	22	26	33
GFI Taxon	7 (Leuctridae)				
Robustesse IBG $ 20 $ EQR	15 0,88	13 0,75	12 0,69	10 0,56	14 0,82
Coef. d'habitabilité (/20)	14,07	12,65	12,65	12,65	12,65

Tableau 8 : Résultats des indices biologiques invertébrés obtenus sur la station « CRA_RES_AV »

L'indice biologique en vigueur (I2M2) classe la station « CRA_RES_AV » globalement en bon état biologique entre 2019 et 2023. Seule l'année 2021 ressort dans un état biologique inferieur (classe moyenne) pour les deux indices biologiques d'après l'arrêté ministériel du 9 octobre 2023 modifiant celui du 25 janvier 2010.


Le tableau ci-dessous présente une synthèse des résultats d'indices caractérisant la structure des peuplements d'invertébrés échantillonnés entre 2019 et 2023 sur la station du Crazius située en aval de la réserve naturelle.

INDICES DE STRUCTURE	<u>2019</u>	<u>2020</u>	<u>2021</u>	<u>2022</u>	<u>2023</u>
Diversité de Shannon (H')	2,26	3,28	2,75	3,15	2,72
Richesse Taxinomique (S)	41	34	31	32	39
Equitabilité de Piélou $(J/1)$	0,42	0,65	0,56	0,63	0,52
Diversité de Hill $(Hill/1)$	0,72	0,76	0,79	0,78	0,75
Dominance de Simpson $(D/1)$	0,37	0,16	0,30	0,20	0,26
				<u> </u>	
Proportion EPT Ni. (%)	7,9%	40,6%	13,9%	10,6%	12,9%
Proportion GOLD Ni. (%)	83,5%	35,5%	71,3%	39,8%	76,9%
$ Taxon\ dominant\ \mid\ (\%\)$	Potamopyrgus - 57%	Leuctra - 25%	Potamopyrgus - 53%	Potamopyrgus - 39%	Simuliidae - 45%
Abondance (Ni)	4387	2022	2276	1151	3987

Tableau 9 : Résultats des indices de structure des peuplements obtenus sur la station « CRA_RES_AV »

Les traits écologiques présentés ci-dessous ont été choisi en fonction du contexte de l'étude. Seuls les taxons pour lesquels les caractéristiques écologiques sont connus ont été pris en compte dans l'analyse.

Evolution de l'état biologique de la station « CRA_RES_AV » entre 2019 et 2023 selon l'IBG-DCE et l'I2M2

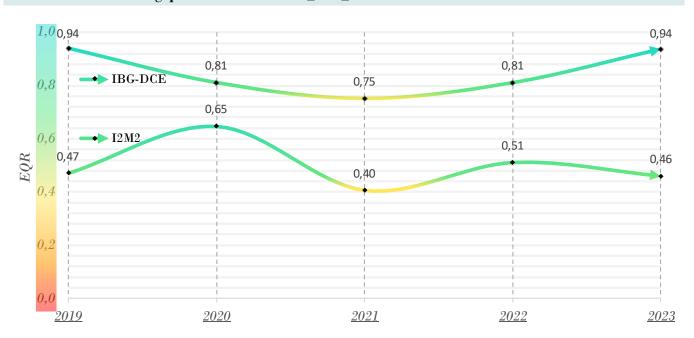


Figure 13 : Evolution des indices IBG et I2M2 sur la station « CRA_RES_AV »

2.5 Analyse interstationnelle diachronique - Crazius

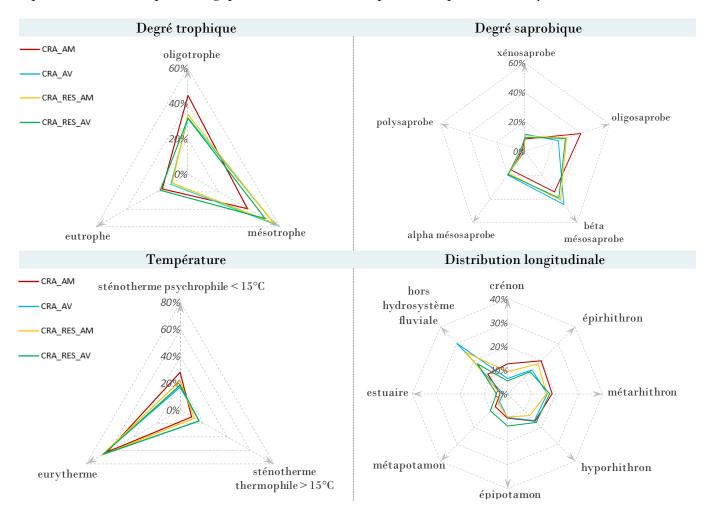
> Une moyenne des données résultant des 5 dernières années de suivi a été établie sur chaque station afin d'identifier les tendances et les différences majeures entre chaque site étudié.

Le tableau ci-dessous présente une synthèse moyennant les résultats indiciels obtenus sur les 4 stations du Crazius entre 2019 et 2023.

INDICES BIOLOGIQUES	<u>CRA_AM</u>	CRA_AV	CRA_RES_AM	CRA_RES_AV
$\mathbf{I2M2}\;(EQR)$	0,66	0,53	0,55	0,50
Diversité I2M2 (EQR)	0,48	0,29	0,47	0,40
ASPT I2M2 (EQR)	0,92	0,63	0,72	0,61
Ooviviparité I2M2 (EQR)	0,73	0,57	0,53	0,54
Polyvoltinisme I2M2 (EQR)	0,74	0,71	0,65	0,58
Richesse I2M2 (EQR)	0,30	0,30	0,27	0,27
IBG-DCE /20 EQR	15,4 0,9	15,4 0,9	14,4 0,84	14,6 0,85
Variété taxinomique IBG	30	30	27	29
GFI Taxon	7 (Leuctridae)	7 (Leuctridae)	7 (Leuctridae)	7 (Leuctridae)
Robustesse IBG $ 20 $ EQR	14,6 0,86	14,2 0,82	13,2 0,77	12,8 0,74
Coef. d'habitabilité (/20)	14,10	16,12	13,73	12,93

Tableau 10 : Résultats moyens des indices biologiques invertébrés obtenus sur les 4 stations du Crazius

L'indice biologique en vigueur (I2M2) classe l'ensemble des stations du Crazius en bon état biologique sur la période 2019 – 2023 d'après l'arrêté ministériel du 9 octobre 2023 modifiant celui du 25 janvier 2010.


Le tableau ci-dessous présente une moyenne des résultats indiciels caractérisant la structure des peuplements d'invertébrés obtenus ces 5 dernières années sur les quatre stations du Crazius.

INDICES DE STRUCTURE	CRA AM	CRA AV	CRA RES AM	CRA RES AV
Diversité de Shannon (H')	3,18	2,49	2,89	2,83
${\bf Richesse} \ {\bf Taxinomique} \ (S)$	37	37	35	35
Equitabilité de Piélou $(J/1)$	0,61	0,48	0,57	0,55
Diversité de Hill $(Hill/1)$	0,75	0,71	0,76	0,76
Dominance de Simpson $(D/1)$	0,17	0,30	0,24	0,26
Proportion EPT Ni. (%)	22,2%	31,3%	33,6%	17,2%
Proportion GOLD Ni. (%)	45,6%	57,1%	44,3%	61,4%
	r			
Taxon dominant (%)	Chironomidae - 32%	Potamopyrgus - 40,6%	Leuctra - 28,1%	Potamopyrgus - 39%
Abondance (Ni)	2672	3336	2038	2765

Tableau 11 : Résultats moyens des indices de structure des peuplements obtenus sur les 4 stations du Crazius

Les traits écologiques présentés ci-dessous ont été choisi en fonction du contexte de l'étude. Seuls les taxons pour lesquels les caractéristiques écologiques sont connus ont été pris en compte dans l'analyse.

Evolution de l'état biologique attribué aux stations du Crazius entre 2019 et 2023 selon l'IBG-DCE et l'I2M2

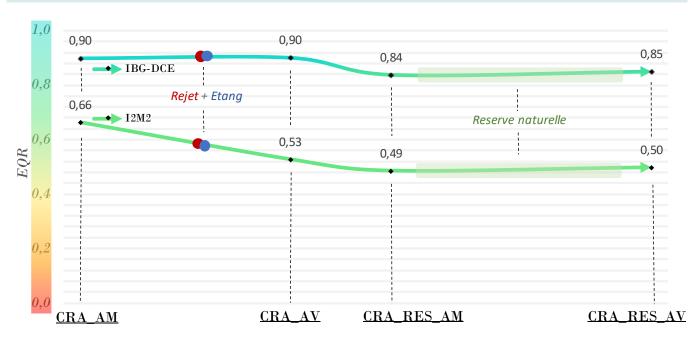
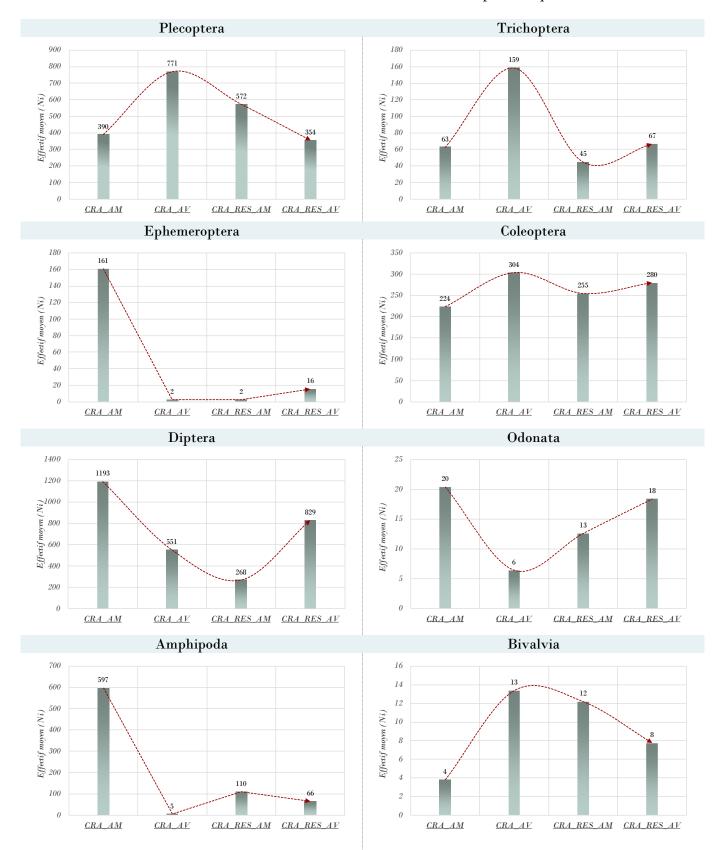
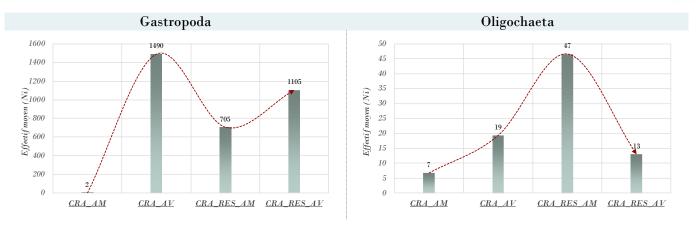
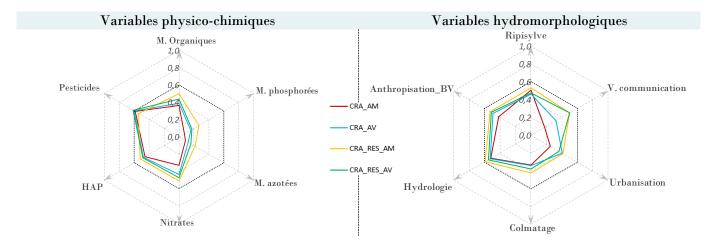



Figure 14: Evolution des scores IBG et 12M2 attribués aux stations du Crazius sur la période 2019 - 2023



Analyse fine des peuplements

Les graphiques ci-après présentent une analyse interstationnelle à l'échelle des groupes de taxons (rang taxinomique de l'ordre). Ces groupes taxinomiques ont été choisis pour leur sensibilité et/ou leur représentativité significative sur une ou plusieurs stations du Crazius. Les groupes suivants ont été exclus de l'analyse : Hemiptera, Megaloptera, Pharyngobdelliformes, Nemathelmintha, Ostracoda, Tricladida, Hydracarina et Isopoda. La moyenne des effectifs des invertébrés inventoriés entre 2019 – 2023 a ainsi été établie pour chaque station du Crazius.


2.6 Interprétation des résultats

Au regard des classes d'état associées aux scores indiciels obtenus sur le Crazius entre 2019 et 2023 aucune incidence significative du rejet de la carrière Imerys dans le milieu naturel récepteur n'est identifiée. En lissant les résultats obtenus entre 2019 et 2023, l'IBG-DCE et de l'I2M2 classent l'ensemble des stations à minima en bon état biologique (cf. tableau 9 et figure 14) selon l'arrêté ministériel du 9 octobre 2023 modifiant celui du 25 janvier 2010.

De même, l'analyse autécologique montre des peuplements aux caractéristiques écologiques proches. Les peuplements inventoriés sur la station de référence « CRA_AM » traduisent tout de même un milieu oligotrophe (pauvre en éléments nutritifs) et oligosaprobe (pauvre en matières organiques) et donc de « meilleur qualité ». Les trois stations aval tendent vers un milieu un peu plus riche en nutriments et en matières organiques (mésotrophe et ß mésosaprobe). Nous constatons une certaine dérive typologique des invertébrés aquatiques à partir de la station « CRA_AV ». Cette dérive observée ne s'avère pas être liée directement au rejet de la carrière Imerys mais vraisemblablement à l'effet plan d'eau sur cours du Crazius situé entre la station « CRA_AM » et « CRA_AV ».

Même si la classe d'état biologique I2M2 ne change pas, il est tout de même constaté une diminution du score I2M2 en aval du point de rejet Imerys (voir tableau 9). Cette évolution négative est induite par une baisse de la diversité taxinomique couplée à une diminution du score ASPT (métrique contributive au calcul de l'I2M2). De plus, Potamopyrgus antipodarum, taxon ovovivipare, est particulièrement abondant sur cette station ce qui fait chuter le score EQR de l'ovoviviparité (métrique également contributive au calcul de l'I2M2).

En complément de l'I2M2, un outil prédictif des pressions anthropiques subies par un milieu a été mis au point. Par l'analyse des fréquences d'apparition au sein des peuplements de certaines caractéristiques écologiques, une probabilité d'impact est calculée pour 6 pressions physico-chimiques ou 6 pressions d'ordre hydromorphologique. Les données issues de l'outil diagnostic I2M2 sont représentées sous la forme des diagrammes radars ci-après. Le cercle en pointillé indique une probabilité d'impact de 0.6, au-delà de laquelle la pression est considérée comme significative.

Le premier diagramme est représentatif des catégories de pressions chimiques liées à la qualité de l'eau, l'autre est représentatif des catégories de pressions liées à la dégradation physique de l'habitat.

L'ensemble des probabilités d'altération du milieu fournies par l'outil diagnostic I2M2 sont inferieures à 0.6 et donc considérées sans influence majeure pour le milieu. La station « CRA_AM » s'avère être moins perturbée que les autres sites d'étude mais les différences interstationnelles restent faibles, aucune perturbation morphologique et physico-chimique ne sont jugées significatives sur Le Crazius.

Cet outil est cependant à utiliser avec prudence, il donne une indication sur la probabilité qu'un ou plusieurs types de pression soient susceptibles d'avoir un effet significatif sur le peuplement d'invertébrés. Les probabilités d'impact ne constituent pas des preuves irréfutables de la présence ou non d'une pression. Ces informations peuvent orienter mais nécessitent d'être confirmés par l'étude d'autres types de données.

L'analyse fine des peuplements basée sur les effectifs des invertébrés inventoriés au fil de l'eau fait apparaître des différences interstationnelles significatives pour certains taxons.

Parmi les graphiques associés aux différents groupes de taxons présentés précédemment certains ont des profils similaires à d'autres :

- → <u>Plécoptères</u>. Trichoptères: Ces deux groupes de taxons ont des effectifs plus importants sur la station « CRA_AV » du fait des habitats favorables à l'accueil de ces taxons sur cette station (sédiments minéraux de grande taille et vitesses d'écoulement rapides).
- → Odonates: La majorité des odonates inventoriées sur le Crazius sont des espèces fouisseuses retrouvées généralement dans les sédiments minéraux fins des cours d'eau. La station « CRA_AV » présente le plus faible recouvrement de sédiments fins, cela peut expliquer une diminution des effectifs d'odonates sur cette station.
- → <u>Diptères</u>: Nous observons une abondance plus importante des diptères majoritairement représentés par la famille des *Chironomidae*, *Limoniidae* et *Simuliidae*. Ces trois taxons affectionnent particulièrement les milieux qui subissent un apport de matières organiques. La station « CRA_AM » est située en aval immédiat d'une pâture active de bovins pouvant apporter, ponctuellement, des éléments organiques dans le milieu lors d'épisodes pluvieux.
- → <u>Bivalves</u>: Les effectifs de ce taxon sont particulièrement faibles sur la station « CRA_AM » caractérisée par un milieu pauvre en nutriments. Les bivalves sont des organismes filtreurs que l'on retrouve communément dans des milieux plus riches en éléments nutritifs tel est constaté sur les stations aval du Crazius.
- → <u>Oligochètes</u>: Au même titre que les bivalves, l'abondance des oligochètes dans le milieu est étroitement liée à sa teneur en nutriments et/ou en matières organiques. De ce fait, les oligochètes présentent un effectif faible sur la station « CRA AM ».
- → <u>Coléoptères</u>: Ce groupe de taxon est présent dans des abondances de même ordre de grandeur sur l'ensemble des stations étudiées au fil du Crazius : aucune influence notable.
- → <u>Gastéropodes</u>: Ce groupe est très majoritairement représenté par l'espèce <u>Potamopyrgus antipodarum</u> sur les trois stations aval du Crazius. Il s'agit d'une espèce invasive ubiquiste qui prolifère quand les conditions de milieu sont favorables (eaux tempérées avec source de nourriture végétale). Sa forte abondance dans le milieu est probablement liée à la présence du plan d'eau sur cours situé entre la station « CRA_AM » et « CRA_AV ».
- → Amphipodes et Ephéméroptères: Ces deux groupes taxinomiques aux écologies différentes ont la particularité de connaître une chute brutale de leurs effectifs à partir de la station « CRA_AV » malgré la présence d'habitats favorables à leur accueil et à leur maintien sur les stations aval. La qualité habitationnelle du milieu n'explique donc pas cette diminution drastique des effectifs. Le plan d'eau sur cours favorisant principalement une augmentation de la température des eaux en aval de ce dernier ne constitue pas un élément défavorable, du moins pour les amphipodes (Gammaridae). Le rejet de la carrière Imerys peut donc être responsable du déclin de ces taxons sur Le Crazius aval.

Au vu des résultats obtenus entre 2019 et 2023, le rejet Imerys et le plan d'eau du Crazius exercent une influence sur les peuplements d'invertébrés aquatiques situés en aval. Les scores indiciels I2M2 obtenus ces cinq dernières années classent néanmoins le Crazius en bon état biologique selon l'arrêté ministériel du 9 octobre 2023.

3 Etude des cortèges diatomiques

L'ensemble des listes floristiques (données brutes) sont annexées à ce rapport.

3.1 Analyse interannuelle – station « CRA_AM »

Le tableau ci-dessous présente une synthèse des résultats indiciels obtenus entre 2019 et 2023 sur la station du Crazius située en amont du point de rejet.

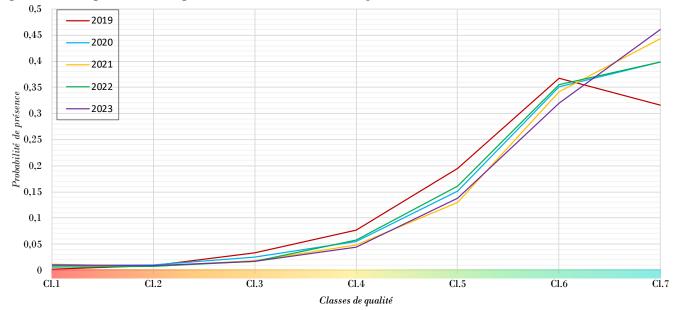
	<u>2019</u>	<u>2020</u>	<u>2021</u>	<u>2022</u>	<u>2023</u>
IBD /20 EQR	19,2 1,1	19,9 1,15	20 1,15	20 1,15	20 1,15
Taxons contributifs IBD ($\%$)	82,9%	76,6%	76,9%	79,2%	77,8%
IPS (/20)	13,6	15,3	16,5	16,2	16,1
Richesse Taxinomique (S)	35	47	39	53	36
Diversité de Shannon (H')	2,93	3,08	2,02	3,31	1,97
Equitabilité de Piélou (J/I)	0,57	0,55	0,38	0,58	0,38
Diversité de Hill (Hill/1)	0,79	0,84	0,75	0,88	0,75
Dominance de Simpson $(D/1)$	0,25	0,28	0,53	0,30	0,57
$\textbf{Code Taxon dominant} \hspace{0.1cm} \hspace{0.1cm} (\%)$	MAYA - 43%	POBL - 49%	POBL - 72%	POBL - 53%	POBL - 75%
Formes tératogènes (%)	0,00%	0,50%	0,70%	0,25%	0,50%

Tableau 12 : Résultats des indices biologiques diatomées obtenus sur la station « CRA_AM »

L'indice biologique en vigueur (IBD) classe la station « CRA_AM » à en très bon état biologique entre 2019 et 2023 d'après l'arrêté ministériel du 9 octobre 2023 modifiant celui du 25 janvier 2010.

Evolution de l'état biologique de la station « CRA_AM » entre 2019 et 2023 selon l'IBD (et l'IPS)

20 19,2 20,0 20,0► IBD (/20) 16,5 16,2 16,1 15,3 16 14 ► IPS (/20) 12 10 8 2019 *2020 2021* 2022 *2023*


Figure 15: Evolution des indices IBD et IPS sur la station « CRA_AM »

Les traits écologiques présentés ci-dessous ont été choisi en fonction du contexte de l'étude. Seuls les taxons pour lesquels les caractéristiques écologiques sont connus ont été pris en compte dans l'analyse.

Pour chaque diatomée prise en compte par la norme, a été estimée sa probabilité de présence dans 7 classes de qualité des eaux, ce qui constitue son profil écologique. Pour chaque année a été tracée la courbe synthétique représentant la probabilité de présence d'un taxon fictif image de l'échantillon.

 $Figure~16: Profils~\'ecologiques~des~cort\`eges~diatomiques~\'echantillonn\'es~sur~la~station~«~CRA_AM~»$

22

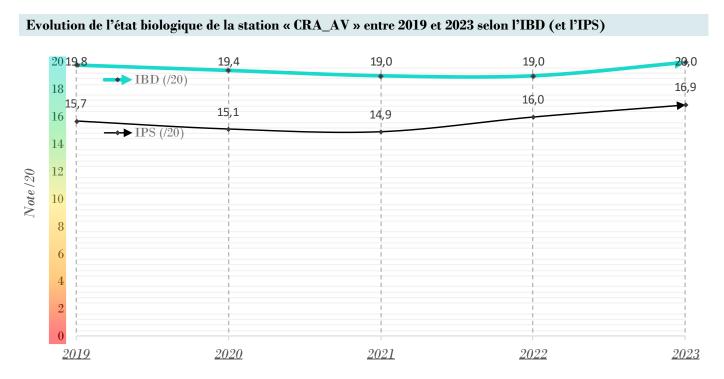
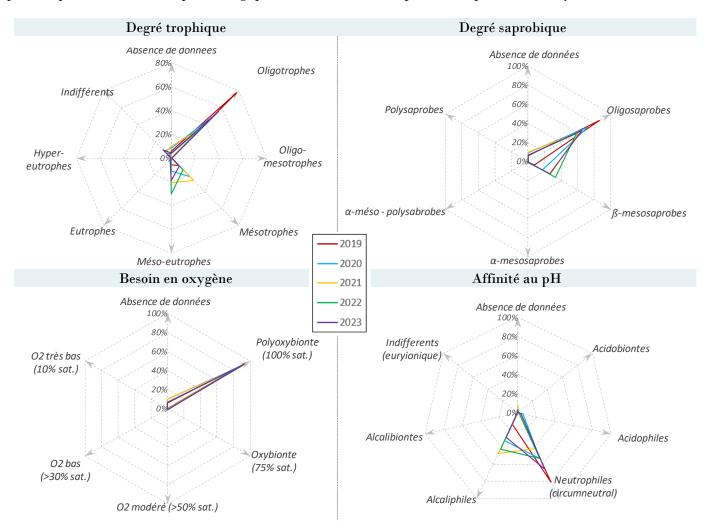
3.2 Analyse interannuelle - station « CRA_AV »

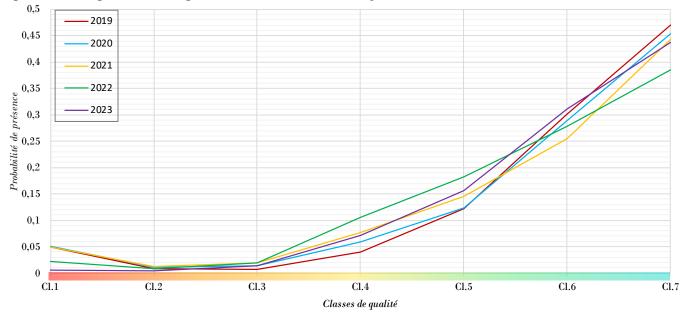
Le tableau ci-dessous présente une synthèse des résultats indiciels obtenus entre 2019 et 2023 sur la station du Crazius située en aval du point de rejet.

	<u>2019</u>	<u>2020</u>	<u>2021</u>	<u>2022</u>	<u>2023</u>
IBD /20 EQR	19,8 1,14	19,4 1,12	19 1,09	19 1,09	20 1,15
Taxons contributifs IBD ($\%$)	88,9%	87,0%	81,6%	86,4%	85,2%
IPS (/20)	15,7	15,1	14,9	16,0	16,9
Richesse Taxinomique (S)	18	23	38	22	27
Diversité de Shannon (H')	1,78	2,88	3,07	2,78	2,99
Equitabilité de Piélou $(J/1)$	0,43	0,64	0,58	0,62	0,63
Diversité de Hill $(Hill/1)$	0,68	0,74	0,75	0,70	0,77
Dominance de Simpson $(D/1)$	0,52	0,22	0,19	0,20	0,22
Code Taxon dominant \mid (%)	POBL - 71%	POBL - 39%	POBL - 28%	POBL - 31%	POBL - 42%
Formes tératogènes ($\%$)	4,38%	4,44%	4,20%	1,73%	0,49%

Tableau 13 : Résultats des indices biologiques diatomées obtenus sur la station « CRA_AV »

L'indice biologique en vigueur (IBD) classe la station « CRA_AV » à en très bon état biologique entre 2019 et 2023 d'après l'arrêté ministériel du 9 octobre 2023 modifiant celui du 25 janvier 2010.


Figure 17: Evolution des indices IBD et IPS sur la station « CRA_AV »

Les traits écologiques présentés ci-dessous ont été choisi en fonction du contexte de l'étude. Seuls les taxons pour lesquels les caractéristiques écologiques sont connus ont été pris en compte dans l'analyse.

Pour chaque diatomée prise en compte par la norme, a été estimée sa probabilité de présence dans 7 classes de qualité des eaux, ce qui constitue son profil écologique. Pour chaque année a été tracée la courbe synthétique représentant la probabilité de présence d'un taxon fictif image de l'échantillon.

 $Figure~18: Profils~\'ecologiques~des~cort\`eges~diatomiques~\'echantillonn\'es~sur~la~station~\'ec CRA_AV~w$

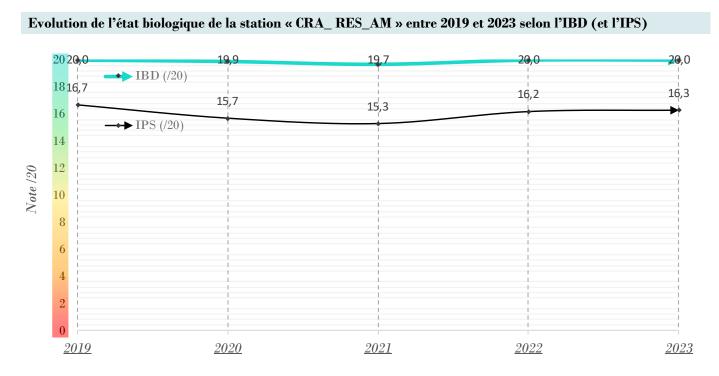
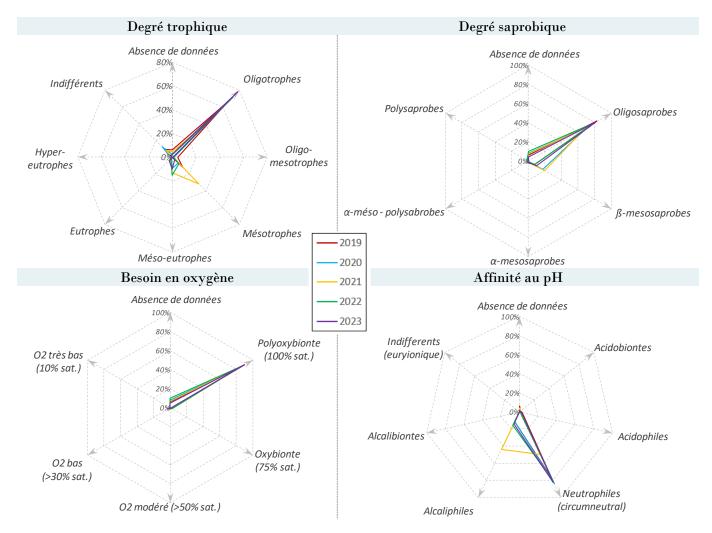
3.3 Analyse interannuelle - station « CRA_RES_AM »

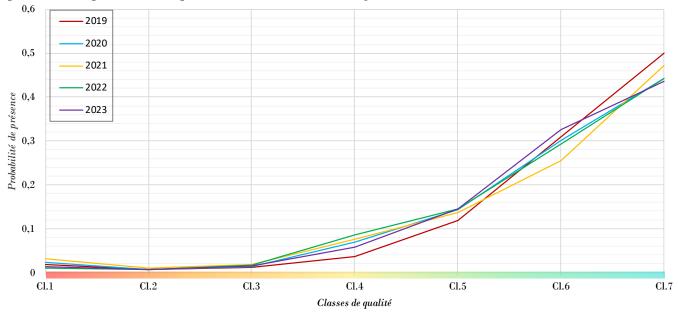
Le tableau ci-dessous présente une synthèse des résultats indiciels obtenus entre 2019 et 2023 sur la station du Crazius située en amont de la réserve naturelle.

	<u>2019</u>	<u>2020</u>	<u>2021</u>	<u>2022</u>	<u>2023</u>
IBD /20 EQR	20 1,15	19,9 1,15	19,7 1,14	20 1,15	20 1,15
Taxons contributifs IBD ($\%$)	88,0%	87,5%	90,0%	100,0%	90,0%
IPS (/20)	16,7	15,7	15,3	16,2	16,3
Richesse Taxinomique (S)	25	16	37	25	27
Diversité de Shannon (H')	2,43	2,10	2,97	2,23	1,81
Equitabilité de Piélou $(J/1)$	0,52	0,53	0,57	0,48	0,38
Diversité de Hill $(Hill/1)$	0,77	0,70	0,77	0,74	0,71
Dominance de Simpson $(D/1)$	0,38	0,41	0,23	0,41	0,57
$\textbf{Code Taxon dominant} \hspace{0.1cm} \hspace{0.1cm} (\%)$	POBL - 60%	POBL - 63%	POBL - 35%	POBL - 63%	POBL - 75%
Formes tératogènes ($\%$)	1,49%	1,74%	2,70%	0,74%	0,98%

Tableau 14 : Résultats des indices biologiques diatomées obtenus sur la station « CRA_RES_AM »

L'indice biologique en vigueur (IBD) classe la station « CRA_RES_AM » à en très bon état biologique entre 2019 et 2023 d'après l'arrêté ministériel du 9 octobre 2023 modifiant celui du 25 janvier 2010.


Figure 19: Evolution des indices IBD et IPS sur la station « CRA_ RES_AM »

Les traits écologiques présentés ci-dessous ont été choisi en fonction du contexte de l'étude. Seuls les taxons pour lesquels les caractéristiques écologiques sont connus ont été pris en compte dans l'analyse.

Pour chaque diatomée prise en compte par la norme, a été estimée sa probabilité de présence dans 7 classes de qualité des eaux, ce qui constitue son profil écologique. Pour chaque année a été tracée la courbe synthétique représentant la probabilité de présence d'un taxon fictif image de l'échantillon.

 $Figure~20: Profils~\'ecologiques~des~cort\`eges~diatomiques~\'echantillonn\'es~sur~la~station~ «~CRA_~RES_AM~» and station~ (CRA_~RES_AM~) and s$

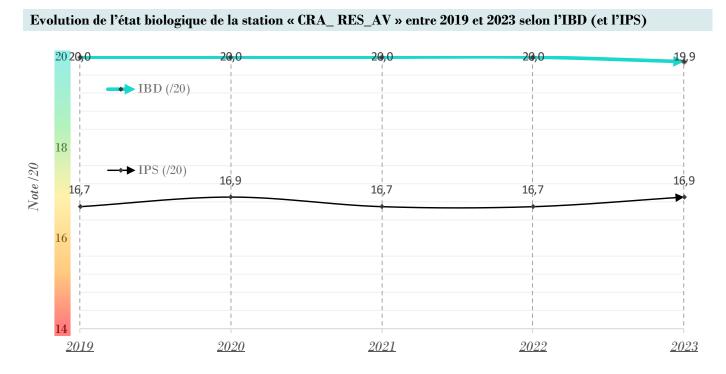
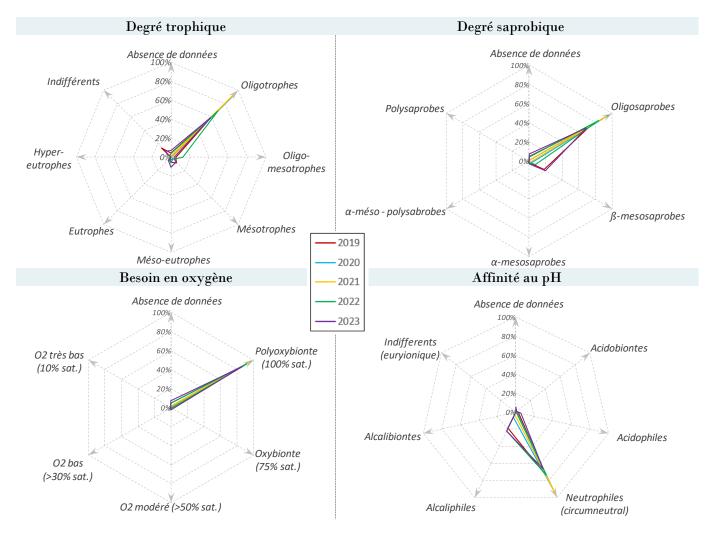
3.4 Analyse interannuelle - station « CRA_RES_AV »

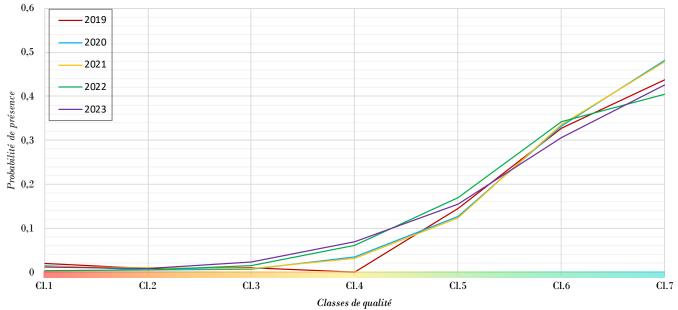
Le tableau ci-dessous présente une synthèse des résultats indiciels obtenus entre 2019 et 2023 sur la station du Crazius située en aval de la réserve naturelle.

	<u>2019</u>	<u>2020</u>	<u>2021</u>	<u>2022</u>	<u>2023</u>
IBD /20 EQR	20 1,15	20 1,15	20 1,15	20 1,15	19,9 1,15
Taxons contributifs IBD $(\%)$	82,8%	90,0%	90,0%	80,0%	80,0%
IPS (/20)	16,7	16,9	16,7	16,7	16,9
${\bf Richesse\ Taxinomique\ }(S)$	29	19	15	33	53
Diversité de Shannon (H')	2,59	1,01	0,69	2,18	3,30
Equitabilité de Piélou $(J/1)$	0,53	0,24	0,18	0,43	0,58
Diversité de Hill $(Hill/1)$	0,77	0,53	0,41	0,75	0,86
Dominance de Simpson $(D/1)$	0,33	0,77	0,84	0,45	0,26
$\textbf{Code Taxon dominant} \hspace{0.2cm} \hspace{0.2cm} (\%)$	POBL - 55%	POBL - 88%	POBL - 92%	POBL - 66%	POBL - 48%
Formes tératogènes (%)	1,47%	1,25%	1,00%	0,25%	0,98%

Tableau 15 : Résultats des indices biologiques diatomées obtenus sur la station « CRA_RES_AV »

L'indice biologique en vigueur (IBD) classe la station « CRA_RES_AV » à en très bon état biologique entre 2019 et 2023 d'après l'arrêté ministériel du 9 octobre 2023 modifiant celui du 25 janvier 2010.


Figure 21 : Evolution des indices IBD et IPS sur la station « CRA_RES_AM »

Les traits écologiques présentés ci-dessous ont été choisi en fonction du contexte de l'étude. Seuls les taxons pour lesquels les caractéristiques écologiques sont connus ont été pris en compte dans l'analyse.

Pour chaque diatomée prise en compte par la norme, a été estimée sa probabilité de présence dans 7 classes de qualité des eaux, ce qui constitue son profil écologique. Pour chaque année a été tracée la courbe synthétique représentant la probabilité de présence d'un taxon fictif image de l'échantillon.

 $Figure~22: Profils~\'ecologiques~des~cort\`eges~diatomiques~\'echantillonn\'es~sur~la~station~a~CRA_RES_AV~warden and all contractions and all contractions are contracted by the contraction of the contract$

3.5 Analyse interstationnelle diachronique - Crazius

Une moyenne des données résultant des 5 dernières années de suivi a été établie sur chaque station afin d'identifier les tendances et les différences majeures entre chaque site étudié.

Le tableau ci-dessous présente une synthèse moyennant les résultats indiciels obtenus sur les 4 stations du Crazius entre 2019 et 2023.

	CRA_AM	CRA_AV	CRA_RES_AM	CRA_RES_AV
IBD /20 EQR	19,82 1,14	19,44 1,12	19,92 1,15	19,98 1,15
Taxons contributifs IBD $(\%)$	78,7%	85,8%	91,1%	84,6%
IPS (/20)	15,5	15,7	16,0	16,8
Richesse Taxinomique (S)	42	26	26	30
Diversité de Shannon (H')	2,66	2,70	2,31	1,95
Equitabilité de Piélou $(J/1)$	0,49	0,58	0,50	0,39
Diversité de Hill $(Hill/1)$	0,80	0,73	0,74	0,66
Dominance de Simpson $(D/1)$	0,39	0,27	0,40	0,53
Code Taxon dominant \mid (%)	POBL - 55%	POBL - 42%	POBL - 59%	POBL - 70%
Formes tératogènes ($\%$)	0,39%	3,05%	1,53%	0,99%

Tableau 16 : Résultats moyens des indices biologiques diatomées obtenus sur les 4 stations du Crazius

L'indice biologique en vigueur (IBD) classe l'ensemble des stations du Crazius en très bon état biologique sur la période 2019 – 2023 d'après l'arrêté ministériel du 9 octobre 2023 modifiant celui du 25 janvier 2010. L'IPS, plus discriminant, confirme les résultats obtenus avec l'IBD.

Evolution de l'état biologique attribué aux stations du Crazius entre 2019 et 2023 selon l'IBD (et l'IPS).

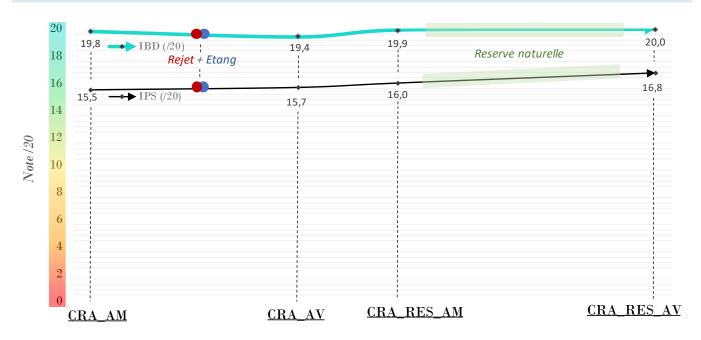
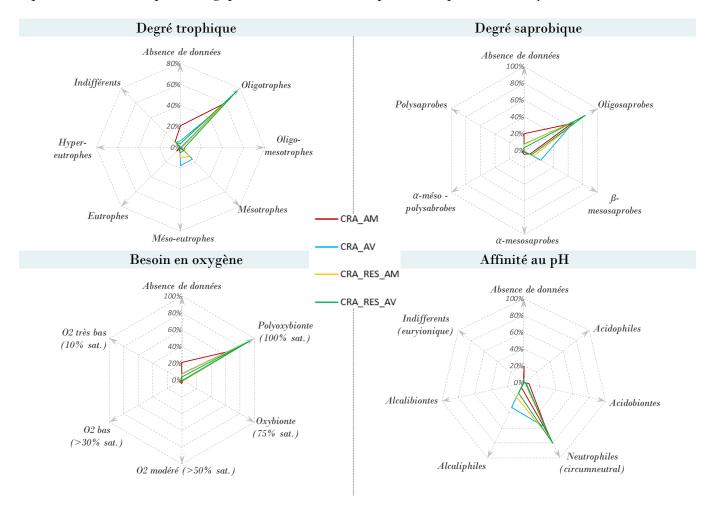



Figure 23 : Evolution des scores IBG et I2M2 attribués aux stations du Crazius sur la période 2019 - 2023

Les traits écologiques présentés ci-dessous ont été choisi en fonction du contexte de l'étude. Seuls les taxons pour lesquels les caractéristiques écologiques sont connus ont été pris en compte dans l'analyse.

Pour chaque diatomée prise en compte par la norme, a été estimée sa probabilité de présence dans 7 classes de qualité des eaux, ce qui constitue son profil écologique. Pour chaque station a été tracée la courbe synthétique représentant la probabilité de présence d'un taxon fictif image de l'échantillon.

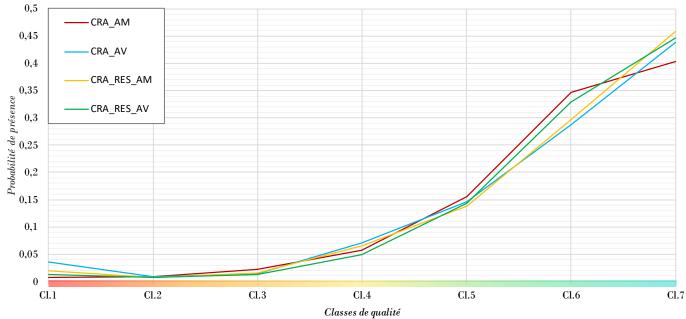


Figure 24 : Profils écologiques des cortèges diatomiques des quatre stations du Crazius

3.6 Interprétation des résultats

L'Indice Biologique Diatomique fait apparaître des scores supérieurs à l'état de référence considéré dans cette hydro écorégion pour ce niveau typologique. Le Crazius est classé en très bon état biologique sur l'ensemble des stations étudiées de 2019 à 2023 selon l'arrêté ministériel du 9 octobre 2023 modifiant celui du 25 janvier 2010. L'Indice de Pollution Spécifique fait apparaître des notes plus faibles que l'IBD mais, à l'image de ce dernier, aucune incidence significative du rejet de la carrière Imerys Glomel dans le milieu naturel récepteur n'est identifié par ces deux indices biologiques.

L'espèce qui domine les cortèges diatomiques sur l'ensemble des stations étudiées est la même chaque année, à savoir : *Platessa oblongella (Monoraphidee)*. Il s'agit d'une espèce considérée comme polluo-sensible inféodée aux eaux de « bonne qualité ». Elle représente pour moitié, ou plus, l'effectif des diatomées inventoriées ce qui peut induire une éventuelle surévaluation des notes IBD et IPS. Le profil écologique des inventaires est l'image de celui de *Platessa oblongella* reflétant ainsi un milieu oligotrophe, pauvre en matière organique et très bien oxygéné. Même si elles sont moins abondantes, les autres diatomées inventoriées tendent globalement vers ce même profil.

Araphidées La famille des majoritairement représentée par les espèces Staurosira venter (Ehrenberg) et Fragilaria famelica (Kützing) sur le Crazius sont réparties dans des proportions différentes au file de l'eau. Ces deux microalgues brunes sont abondantes sur la station « CRA_AV » comme en témoigne le graphique ci-contre. On retrouve généralement les deux taxons cités dans des milieux stagnants. Le plan d'eau du Crazius semble donc exercer une influence sur la composition des cortèges diatomiques aval.

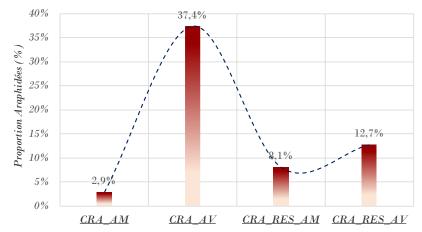


Figure 25 : Distribution des effectifs Araphidées sur le Crazius

La proportion des formes tératogènes observées sur chaque inventaire a été projetée dans le graphique ci-contre afin d'apprécier différences interstationnelles. malformations cellulaires peuvent apparaître chez les diatomées en condition de stress. Une proportion importante de ces formes est généralement l'indication d'une perturbation milieu (variation de température, oligotrophie prononcée, polluants toxiques notamment métaux, pesticides, etc.). Sur le Crazius, nous observons une augmentation des formes tératogènes sur la station « CRA_AV ». La retenue artificielle du Crazius et/ou le rejet Imerys peuvent en être la cause.

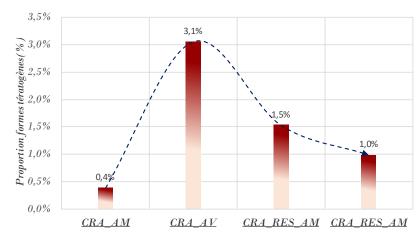


Figure 26 : Distribution des formes tératogènes observées sur le Crazius

Notons également une diminution significative de la richesse spécifique sur le Crazius aval comparativement au nombre d'espèces inventoriées en amont. De 2019 à 2023, il est constaté une perte moyenne constante de 16 taxons entre la station « CRA_AM » et « CRA_AV ». L'explication de cette diminution brutale du nombre d'espèces inventoriés peut être une conséquence du rejet Imerys et/ou du plan d'eau de Crazius.

Au vu des résultats obtenus entre 2019 et 2023, il est difficile de dissocier et de quantifier l'influence éventuelle du rejet Imerys et celle du plan d'eau sur les cortèges diatomiques.

4 Etude des peuplements piscicoles

Les inventaires piscicoles ont été réalisés en septembre 2019, 2020 et 2021 sur 5 stations au fil du Crazius par la Fédération pour la pêche et la protection du milieu aquatique des Côtes d'Armor (FDAAPPMA 22) dans le cadre de la convention de mise en œuvre de l'accord-cadre entre l'Agence de l'Eau Loire Bretagne (AELB) et la FDAAPPMA 22. Aucun inventaire piscicole n'a été réalisé en 2022 en raison d'un étiage estival particulièrement sévère ni en 2023 du fait du plan de charge important de la FDAAPPMA 22 à cette période de l'année. Une température des eaux du Crazius élevée couplée à un taux d'oxygène dissous relativement bas induit une situation de stress pour les poissons d'eaux vives tels que la truite fario. Dans de telles conditions, il a été convenu en 2022 et 2023, de ne pas faire subir un stress supplémentaire aux poissons pouvant occasionner une mortalité chez les individus les plus fragiles. L'analyse des peuplements piscicoles de ce présent rapport bilan concerne donc seulement les résultats obtenus en 2019, 2020 et 2021.

L'espèce cible des inventaires piscicoles réalisés est la **truite fario** (Salmo trutta), espèce patrimoniale du bassin versant de l'Ellé. Les résultats obtenus sur les quatre stations du Crazius en 2019, 2020 et 2021 sont présentés ci-dessous.

	<u>2019</u>	<u>2020</u>	<u>2021</u>
CRA_AM	0	0	0
CRA_AV	8	8	7
CRA_RES_AM	4	17	6
CRA_RES_AV	2	8	1

Tableau 17 : Effectif des truites fario inventoriées entre 2019 et 2021 sur le Crazius.

L'ensemble des classes de taille inventoriées a été pris en compte dans le tableau ci-dessus et le graphique ci-contre. Mis à part la station « CRA_AM », les trois stations aval présentent des truites ayant des classes d'âge différentes. L'absence totale de truite sur la station amont peut s'expliquer par un niveau d'eau très faible mais surtout par une rupture de la continuité écologique au niveau de la retenue artificielle du Moulin de Crazius. Ce point de blocage piscicole empêche les géniteurs de remonter le cours d'eau pour se reproduire en amont du plan d'eau.

Au vu des résultats obtenus par la FDAAPPMA 22, notons que les truitelles de l'année (0+) sont majoritaires sur la station « CRA_AV » chaque année. A l'inverse, la station « CRA_RES_AV » ne présente aucune truitelle 0+. Les caractéristiques habitationnelle de cette station (vitesses d'écoulement faible et substrat minéral fin majoritaire) s'avèrent être peu biogènes pour les truitelles.

La station située en amont de la réserve naturelle présente le plus grand nombre d'individus inventoriés et plus particulièrement dans la classe d'âge 1+ (sub-adulte). En 2020, 14 truites ayant une taille comprise 115 et 170 mm ont été capturées, cela montre un meilleur recrutement et/ou une meilleure survie des truitelles nées en 2019.

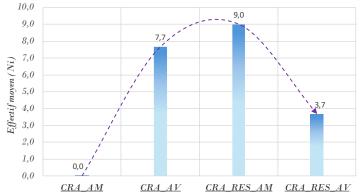


Figure 29 : Moyenne des effectifs des truites fario inventoriées entre 2019 et 2021 sur le Crazius

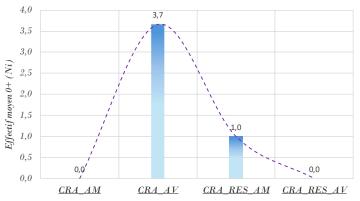


Figure 28 : Moyenne des effectifs des truites fario 0+ inventoriées entre 2019 et 2021 sur le Crazius

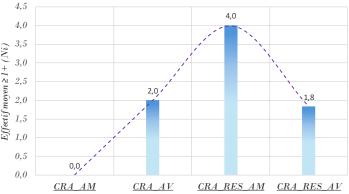


Figure 27 : Moyenne des effectifs des truites fario $\geq 1+$ inventoriées entre 2019 et 2021 sur le Crazius

Les espèces piscicoles d'accompagnement de la truite fario observées sur le Crazius (vairon, loche franche, chabot, anguille) ont été notifiés par leur présence ou absence sur les stations étudiées. N'étant pas des poissons ciblés directement par les inventaires de la FDAAPPMA 22, aucune biométrie n'a été réalisée sur ces quatre espèces d'accompagnent. Les résultats de capture ont été synthétisés et présentés dans le tableau ci-dessous :

		<u>2019</u>	<u>2020</u>	<u>2021</u>
	Cottus gobio (chabot - CHA)	СНА	СНА	СНА
CRA AM	Barbatula barbatula (loche franche - LOF)	LOF	LOF	LOF
GITA_AM	Phoxinus phoxinus (vairon - VAI)	VAI	VAI	-
	$Anguilla\ anguilla\ (anguille\ -\ ANG)$	-	-	-
	Cottus gobio (chabot - CHA)	СНА	СНА	СНА
CRA_AV	$Barbatula\ barbatula\ (loche\ franche\ -\ LOF)$	-	-	-
CITA_AV	Phoxinus phoxinus (vairon - VAI)	VAI	VAI	VAI
	Anguilla anguilla (anguille - ANG)	-	-	-
CRA RES AM	Cottus gobio (chabot - CHA)	СНА	СНА	CHA
	$Barbatula\ barbatula\ (loche\ franche\ -\ LOF)$	-	-	-
CITA_ITES_AM	Phoxinus phoxinus (vairon - VAI)	VAI	VAI	VAI
	Anguilla anguilla (anguille - ANG)	-	-	-
	Cottus gobio (chabot - CHA)	СНА	СНА	СНА
CRA_RES_AV	Barbatula barbatula (loche franche - LOF)	LOF	LOF	LOF
CICA_ICLS_AV	Phoxinus phoxinus (vairon -VAI)	VAI	VAI	VAI
	Anguilla anguilla (anguille - ANG)	-	-	ANG

Tableau 18 : Résultats de captures des espèces d'accompagnement de la TRF sur le Crazius

Les résultats montrent que le **chabot est présent sur l'ensemble des stations** quelle que soit l'année étudiée malgré des habitats peu propices à l'accueil de cette espèce sur les stations « CRA_RES_AM » et « CRA_RES_AV » (sédiments minéraux fins majoritaires).

Le vairon est également une espèce retrouvée sur l'ensemble des sites excepté pour l'année 2021, aucun vairon n'a été inventorié sur la station « CRA_AM ». Les faibles hauteurs d'eau constatées sur cette station en fin d'étiage peuvent être limitantes pour le maintien de cette espèce que l'on retrouve généralement dans les profonds.

La loche franche a été inventoriée chaque année sur la station « CRA_AM » et « CRA_RES_AV » mais aucun individu n'a été capturé sur les deux autres sites. L'absence de cette espèce sur la station « CRA_AV » et « CRA_RES_AM » est difficilement explicable mais suscite un certain questionnement.

Une anguille de petite taille (150 - 300mm) a été capturée en 2021. Selon la FDAAPPMA 22, la présence de cette anguille dans l'inventaire indique qu'il s'agit d'un individu en migration de colonisation résultant de la levée d'un obstacle migratoire plus en aval (d'après la FDAAPPMA 22).

Les résultats des inventaires piscicoles ne semblent pas révéler une incidence du rejet Imerys sur la truite fario présente sur le ruisseau de Crazius. Cette espèce a été inventoriée dans plusieurs classes d'âge en aval du rejet Imerys. La loche franche est en revanche absente des relevées faunistiques de la station « CRA_AV » et « CRA_RES_AM ».

34

5 Analyse des sédiments

Des analyses physico-chimiques des sédiments du Crazius ont été réalisées sur les mêmes stations évoquées précédemment. Les Eléments Traces Métalliques (ETM) analysés dans le cadre du suivi écologique du Crazius sont : le fer (Fe), les sulfates (SO4), l'aluminium (Al) et le manganèse (Mn). Les analyses se sont portées sur la fraction aqueuse des sédiments (eau interstitielle).

5.1 Analyse granulométrique

L'analyse physico-chimique des sédiments s'accompagne d'une analyse granulométrique. La répartition des fractions granulométriques des sédiments sur chaque site est présentée ci-dessous :

		<u>2019</u>	2020	<u>2021</u>	<u>2022</u>	2023
				'		
	CRA_AM	0,44	0,77	0,71	0,43	0,69
Fraction granulométrique	CRA_AV	0,38	0,29	0,48	0,39	0,78
$0.02 \rightarrow 2.00 \ \mu m \ (\%)$	CRA_RES_AM	0,18	0,83	0,70	0,58	1,08
	CRA_RES_AV	0,45	0,57	1,49	0,54	0,95
				1		
	CRA_AM	3,40	7,40	6,69	3,55	6,77
Fraction granulométrique	CRA_AV	4,02	2,99	4,39	2,98	5,83
$2,00 \rightarrow 20,00 \ \mu m \ (\%)$	CRA_RES_AM	1,95	7,48	6,82	4,49	8,86
	CRA_RES_AV	4,27	4,33	11,39	3,70	8,50
			_			
	CRA_AM	4,02	8,99	9,64	5,05	11,12
Fraction granulométrique	CRA_AV	5,12	3,60	6,92	4,65	8,38
$20,00 \rightarrow 63,00 \ \mu m \ (\%)$	CRA_RES_AM	1,65	6,62	10,80	5,88	15,42
	CRA_RES_AV	5,07	5,24	18,73	5,39	13,63
				T	ı	Ţ
	CRA_AM	5,58	24,06	10,44	5,55	12,45
Fraction granulométrique	CRA_AV	9,49	6,57	14,53	8,08	7,77
$63,00 \rightarrow 200,00 \ \mu m \ (\%)$	CRA_RES_AM	3,69	13,24	18,05	4,77	17,65
	CRA_RES_AV	10,79	7,76	29,45	4,70	16,78
				T	ı	
	CRA_AM	86,56	58,78	72,52	85,42	68,98
Fraction granulométrique	CRA_AV	80,99	86,54	73,68	83,90	77,24
200,00 → 2000,00 µm (%)	CRA_RES_AM	92,53	71,82	63,63	84,28	57,00
	CRA_RES_AV	79,43	82,10	38,94	85,67	60,15

Tableau 19 : Résultats des analyses granulométriques obtenus sur le Crazius entre 2019 et 2023

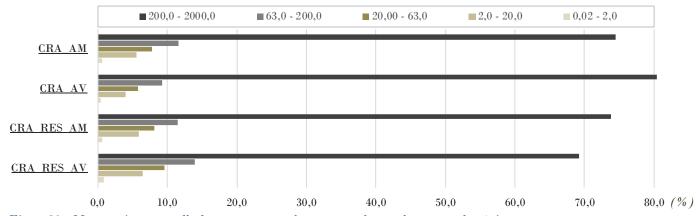
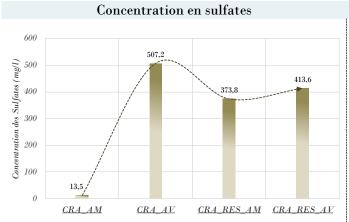
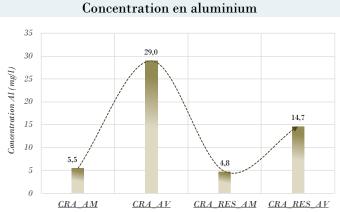
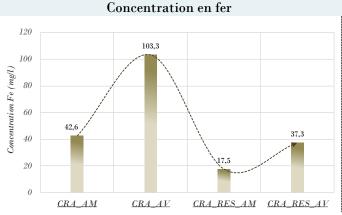


Figure 30 : Moyenne interannuelle des pourcentages obtenus pour chaque classe granulométrique


Les résultats indiquent une **répartition homogène** des tailles de granulats échantillonnés sur les quatre stations du Crazius. La taille des granulats prélevés dans les zones de dépôts du cours d'eau est majoritairement comprise entre 200 et 2000 µm sur l'ensemble des stations du Crazius.


5.2 Analyse physico-chimique


L'ensemble des résultats obtenus entre 2019 et 2023 sur les quatre stations étudiées sur le Crazius sont compilés dans le tableau ci-dessous :

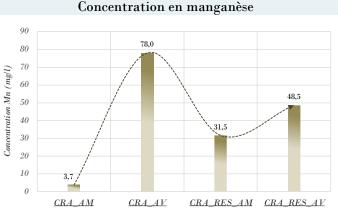

•		<u>2019</u>	<u>2020</u>	2021	<u>2022</u>	<u>2023</u>
			•			
	CRA_AM	9,17	5,89	7,21	10,40	35,00
Sulfator (m. a/l)	CRA_AV	549,00	873,00	491,00	192,00	431,00
Sulfates (mg/l)	CRA_RES_AM	425,00	412,00	445,00	219,00	368,00
	CRA_RES_AV	648,00	622,00	299,00	138,00	361,00
	CRA_AM	1,40	2,50	19,00	4,10	0,57
Al	CRA_AV	3,80	2,70	67,00	71,00	0,31
Aluminium (mg/l)	CRA_RES_AM	3,60	1,70	10,00	8,70	0,05
	CRA_RES_AV	0,79	2,40	28,00	40,00	2,10
	CRA_AM	19,76	56,64	81,11	32,03	23,21
For (200 01/1)	CRA_AV	13,15	11,54	256,96	234,53	0,46
Fer (mg/l)	CRA_RES_AM	9,03	6,91	33,09	38,25	0,40
	CRA_RES_AV	2,48	7,66	71,62	98,06	6,77
	CRA_AM	1,55	1,25	11,27	1,53	2,74
Manganèse (mg/l)	CRA_AV	3,05	39,31	196,16	137,53	13,89
	CRA_RES_AM	6,56	21,38	61,91	44,64	22,96
	CRA_RES_AV	0,48	20,86	82,74	95,33	43,04

Tableau 20 : Résultats des analyses physico-chimiques des sédiments obtenus sur le Crazius

35

Les résultats issus d'un lissage (moyenne) des cinq années étudiées montrent une augmentation des concentrations des quatre ETM analysés sur le Crazius en aval du rejet Imerys. On observe une augmentation significative des teneurs en sulfates et en manganèse chaque année dans l'eau interstitielle des sédiments en aval du rejet Imerys. Les résultats sont plus contrastés pour les teneurs en aluminium et en fer qui diffèrent selon années étudiées. En 2019, 2020 et 2023 les concentrations en fer sont plus importantes sur la station de référence « CRA_AM ». De même pour la teneur en aluminium, les différences interstationnelles constatées ne sont pas significatives et fluctuantes au fil de l'eau et du temps. La station « CRA_RES_AV » est la plus éloignée du rejet Imerys, on constate néanmoins des concentrations en ETM souvent plus élevées sur ce site de prélèvement comparativement à la station « CRA_RES_AM » plus proche de ce dernier.

Les fluctuations des concentrations au fil du temps et au fil de l'eau sont difficilement explicables. On peut néanmoins emmètre certaines hypothèses :

- → des apports naturels superficiels (sources) ou souterrains (nappes phréatiques) entre les stations ;
- → une capacité d'absorption des ETM différente en fonction de la composition du sédiment (teneur en matières organiques) ;
- → une granulométrie différente même si, comme constatée précédemment, les différences interstationnelles sont légères. L'absorption des ETM est favorisée dans les fractions fines ;
- → une modification de la forme géochimique des ETM fonction des conditions d'oxydoréduction dans les sédiments ;
- → la dynamique de sédimentation des particules fonction des vitesse d'écoulement, des hauteurs d'eau, du profil du cours d'eau, de la taille des particules transportées, de la température de l'eau, etc.).
- \rightarrow (...)

La relation teneur ETM / milieu naturel est souvent complexe. Il est difficile d'affirmer ou d'infirmer que la présence d'aluminium et de fer dans les sédiments du Crazius aval soit liée à l'activité d'Imerys Glomel. Même si elles ne sont pas précisément quantifiables, les teneurs en sulfates et en manganèse dans la solution aqueuse des sédiments du Crazius sont en revanche significatives en aval du rejet Imerys. Il est observé un facteur moyen de 37.5 pour les sulfates et 21.3 pour le manganèse entre la station non influencée par le rejet (CRA_AM) et celle située en aval immédiat du rejet Imerys (CRA_AV).

6 Analyse de la physico-chimie des eaux

Des analyses de l'eau superficielle du Crazius ont été réalisées tous les trimestres entre 2019 et 2023 soit 4 prélèvements d'eau par an sur chaque station du Crazius. Les paramètres physico-chimiques analysés sont ceux mentionnés dans l'arrêté préfectoral du 3 août 2018 (pH, MES, DCO, fer, aluminium, manganèse, sulfates, nitrates, phosphore) et la conductivité.

Certains résultats sont absents du jeu de données en raison d'un défaut d'analyse :

- → aucune mesure des MES durant les 3 premiers trimestres 2019 (mise en place des mesures à partir du mois de décembre 2019) ;
 - En raison d'une erreur interne à Imerys :
- → mesure des éléments DCO, NO3, P et MES absente lors du 1er trimestre 2022;
- → absence de résultat pour les éléments Al et conductivité sur les stations « CRA_RES_AM » et « CRA_RES_AV » le 1er trimestre 2022 ;
- → résultat d'analyse des sulfates absent sur la station « CRA_RES_AV » le 1er trimestre 2022.

La colorisation de ce tableau a été établie en se référant aux classes d'état définies par la DCE (arrêté ministériel du 9 octobre 2023 modifiant celui du 25 janvier 2010) et par la Version 2 du Système d'Evaluation de la Qualité de l'Eau des cours d'eau (SEQ-Eau-V2 - classes d'aptitude à la biologie). Les valeurs colorisées dans les tableaux qui suivent sont celles des percentiles 90 (ou des percentiles 10) calculés pour chaque paramètre des quatre stations considérées. Les cellules grisées correspondent aux paramètres pour lesquels les limites de classes d'état n'ont pas été définies. Pour chaque année, figure ci-dessous, la moyenne des valeurs obtenues pour 4 trimestres.

6.1 Analyse du pH

		<u>2019</u>	<u>2020</u>	<u>2021</u>	2022	<u>2023</u>	Centile 90 10	Médiane	Minimum	Maximum
	CRA_AM	6,92	6,93	6,95	7,00	6,88	7,3 6,57	6,86	6,10	7,40
pH (unité pH)	CRA_AV	6,92	7,00	7,05	7,17	7,03	7,4 6,69	7,00	6,30	7,50
pii (unite pii)	CRA_RES_AM	6,91	6,93	6,93	7,17	6,93	7,4 6,6	6,89	6,10	7,50
	CRA_RES_AV	6,93	6,83	6,93	7,17	6,83	7,4 6,57	6,89	6,10	7,50

Tableau 21 : Résultats issus de l'analyse du pH sur le Crazius

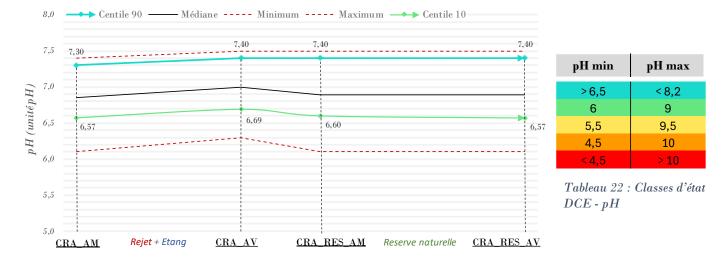


Figure 31 : Evolution du pH au fil de l'eau du Crazius

Le pH minimum (centile 10) et le pH maximum (centile 90) des quatre stations du Crazius présentent des valeurs supérieures au bon état selon l'arrêté ministériel du 9 octobre 2023 (DCE). Aucun déséquilibre physicochimique lié au pH n'est donc constaté sur le Crazius entre 2019 et 2023.

6.2 Analyse de la conductivité

		<u>2019</u>	<u>2020</u>	<u>2021</u>	<u>2022</u>	<u>2023</u>	Centile 90	Médiane	Minimum	Maximum
	CRA_AM	144,2	134,5	140,0	155,0	143,0	169,0	143,0	106,0	172,0
Conductivitá (uS/om)	CRA_AV	1347,3	1217,8	1129,5	1476,7	610,7	1742,3	1010,0	203,0	1810,0
Conductivité (µS/cm) CRA_	CRA_RES_AM	1006,0	952,8	881,0	1176,3	473,9	1351,4	739,0	183,0	1580,0
	CRA_RES_AV	1049,8	866,3	796,3	1073,0	408,9	1346,6	585,0	185,0	1500,0

Tableau 23 : Résultats issus de l'analyse de la conductivité sur le Crazius

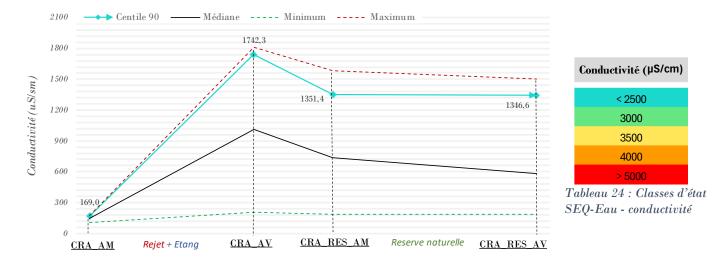


Figure 32 : Evolution de la conductivité au fil de l'eau du Crazius

La conductivité des quatre stations du Crazius reste inferieure à 2500 μ S/cm, ce paramètre n'est donc pas déclassant pour le Crazius selon la V2 du SEQ-Eau. Il est néanmoins constaté une augmentation significative de la conductivité en aval du rejet (facteur 10 entre « CRA_AM » et « CRA_AV »). La conductivité des eaux du Crazius reste également élevée sur les stations situées de part et d'autre de la réserve naturelle.

6.3 Analyse de la demande chimique en oxygène

		<u>2019</u>	2020	2021	2022	2023	Centile 90	Médiane	Minimum	Maximum
	CRA_AM	27,25	27,25	27,25	29,00	11,84	32,00	16,00	8,10	44,00
DCO (mg/l)	CRA_AV	25,00	14,25	18,00	20,00	6,51	30,00	11,00	3,20	30,00
DGO (mg/t)	CRA_RES_AM	26,25	17,75	33,00	20,00	9,85	30,00	13,00	7,10	74,00
	CRA_RES_AV	27,00	20,25	27,25	19,00	9,82	32,00	13,00	5,90	42,00

Tableau 25 : Résultats issus de l'analyse de la DCO sur le Crazius

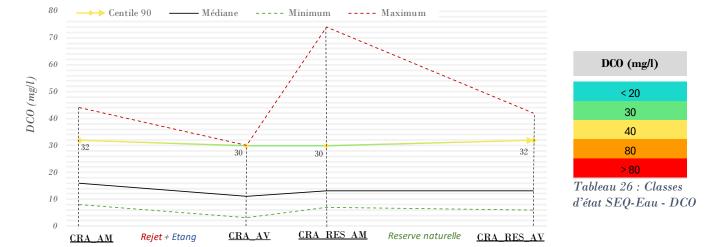


Figure 33 : Evolution de la DCO au fil de l'eau du Crazius

Le centile 90 de la Demande Chimique en Oxygène des stations « CRA_AM » et « CRA_RES_AV » est supérieur à 30 mg/l (seuil du bon état du SEQ-Eau), ces deux stations sont donc classées dans un état physicochimique moyen selon la version 2 de la grille d'évaluation du SEQ-Eau. Les deux autres stations ont un centile 90 DCO de 30mg/l ce qui correspond à la limite inférieure du bon état physico-chimique selon le même référentiel. Outre une classe d'état différente, les quatre stations du Crazius présentent des valeurs de DCO proches. Notons une DCO particulièrement élevée (74 mg/l) en décembre 2021 sur la station « CRA_RES_AM ».

6.4 Analyse des nitrates

		<u>2019</u>	<u>2020</u>	2021	2022	<u>2023</u>	Centile 90	Médiane	Minimum	Maximum
	CRA_AM	16,75	13,25	12,50	13,67	28,27	31,80	18,00	5,00	40,00
Nitrates (mg/l)	CRA_AV	6,25	5,75	5,00	4,33	21,91	23,40	9,00	2,00	35,00
Mitrates (mg/t)	CRA_RES_AM	10,00	9,25	7,50	9,33	22,27	26,20	13,00	5,00	38,00
	CRA_RES_AV	9,50	8,75	7,75	9,33	24,27	30,40	12,00	4,00	42,00

Tableau 27 : Résultats issus de l'analyse des nitrates sur le Crazius

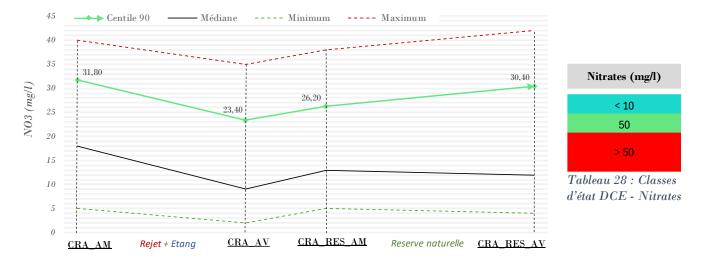


Figure 34 : Evolution des concentrations en nitrates au fil de l'eau du Crazius

Entre 2019 et 2023, 90% des concentrations en nitrates relevées sur le Crazius sont comprises entre 10 et 50 mg/l. De ce fait le Crazius ne semble pas être altéré par les nitrates et se classe dans un bon état physico-chimique par rapport à ce paramètre. La station « CRA_AV » présente les plus faibles concentrations en nitrates.

6.5 Analyse du phosphore total

		<u>2019</u>	<u>2020</u>	2021	2022	<u>2023</u>	Centile 90	Médiane	Minimum	Maximum
	CRA_AM	0,03	0,04	0,07	0,10	0,04	0,10	0,05	0,01	0,15
Phogphone (mg/l)	CRA_AV	0,02	0,02	0,03	0,05	0,02	0,05	0,02	0,01	0,06
Phosphore (mg/l)	CRA_RES_AM	0,02	0,03	0,17	0,06	0,03	0,05	0,03	0,01	0,55
	CRA_RES_AV	0,02	0,02	0,09	0,06	0,02	0,06	0,02	0,01	0,23

Tableau 29 : Résultats issus de l'analyse du phosphore total sur le Crazius

Le centile 90 des concentrations en phosphore des eaux du Crazius ne s'avère pas être déclassant pour le cours d'eau puisque ce paramètre classe le Crazius à minima en bon état physico-chimique. Les valeurs obtenues se trouvent être dans un même ordre de grandeur sur les quatre stations du Crazius. Il est néanmoins constaté une augmentation significative de la concentration en phosphore total sur la station « CRA_RES_AM » en décembre 2021.

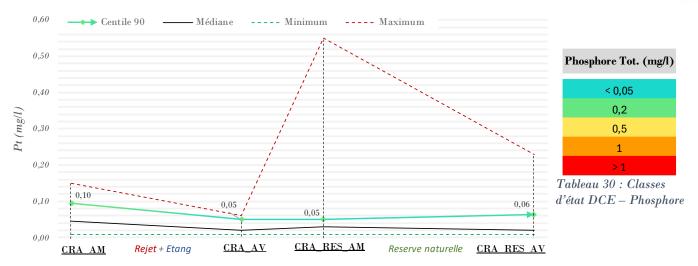
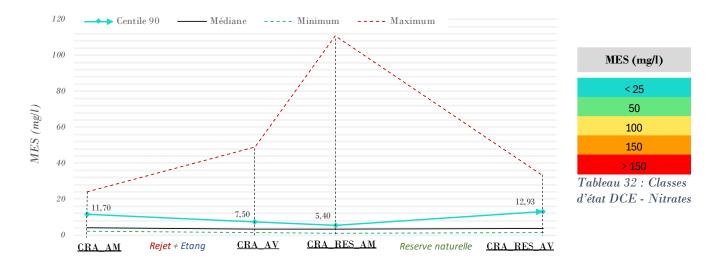



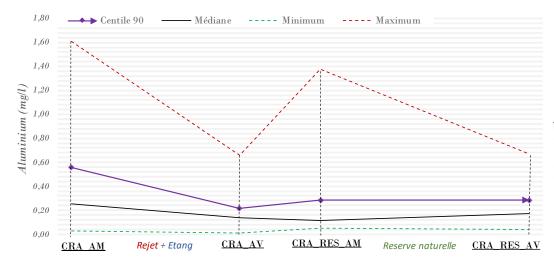
Figure 35 : Evolution des concentrations en phosphore au fil de l'eau du Crazius

6.6 Analyse des matières en suspensions

		<u>2019</u>	<u>2020</u>	<u>2021</u>	<u>2022</u>	<u>2023</u>	Centile 90	Médiane	Minimum	Maximum
	CRA_AM	2,00	5,55	4,13	3,17	8,33	11,70	4,00	2,00	24,00
MES (mg/l)	CRA_AV	2,70	3,43	3,08	3,00	8,18	7,50	3,25	1,50	49,00
MES (mg/t)	CRA_RES_AM	3,90	3,90	30,93	2,80	3,36	5,40	3,25	1,00	111,00
	CRA_RES_AV	2,40	11,33	10,60	2,53	4,62	12,93	3,60	1,50	33,00

Tableau 31 : Résultats issus de l'analyse des MES sur le Crazius

 $Figure\ 36: Evolution\ des\ MES\ au\ fil\ de\ l'eau\ du\ Crazius$

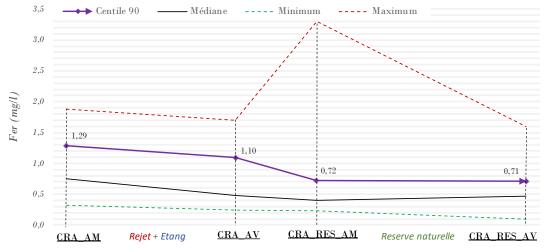

Les matières en suspensions du Crazius sont majoritairement faibles (concentrations < 25 mg/l). Les MES n'est pas un élément déclassant pour le Crazius. Aucune différence interstationnelle significative n'est constatée. Notons néanmoins une concentration en MES supérieure à la normale sur la station « CRA_RES_AM » en décembre 2021.

6.7 Analyse de l'aluminium

		<u>2019</u>	<u>2020</u>	<u>2021</u>	<u>2022</u>	<u>2023</u>	Centile 90	Médiane	Minimum	Maximum
	CRA_AM	0,12	0,44	0,26	0,68	0,37	0,56	0,25	0,03	1,61
Aluminium (m a/l)	CRA AV	0,09	0,12	0,13	0,09	0,17	0,22	0,14	0,01	0,66
Aluminiun (mg/l) CRA_RE	CRA_RES_AM	0,09	0,16	0,45	0,09	0,17	0,29	0,11	0,05	1,38
	CRA_RES_AV	0,10	0,17	0,29	0,10	0,18	0,28	0,17	0,04	0,67

Tableau 33 : Résultats issus de l'analyse de l'élément aluminium sur le Crazius

Aucun référentiel officiel n'excite à ce jour pour qualifier l'état des eaux du cours d'eau pour l'élément aluminium.


Figure 37 : Evolution des concentrations en aluminium au fil de l'eau du Crazius

Les concentrations en aluminium s'avèrent être plus importantes sur la station « CRA_AM ». A l'inverse, la station « CRA_AV » présentent les concentrations en aluminium les plus faibles du Crazius. Les concentrations en aluminium étant plus faibles sur les stations aval que ceux relevées sur la station de référence « CRA_AM », nous pouvons laisser supposer que le rejet Imerys n'a pas d'incidence sur le cours d'eau vis-à-vis de ce paramètre.

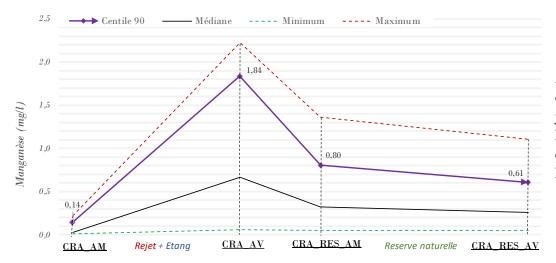
6.8 Anasyse du fer

		<u>2019</u>	<u>2020</u>	<u>2021</u>	<u>2022</u>	<u>2023</u>	Centile 90	Médiane	Minimum	Maximum
	CRA_AM	0,63	0,86	0,77	0,95	0,87	1,29	0,75	0,32	1,88
For (mg/I)	CRA_AV	0,49	0,38	0,45	0,39	0,74	1,10	0,48	0,24	1,70
Fer (mg/l)	CRA_RES_AM	0,32	0,49	1,15	0,33	0,52	0,72	0,41	0,23	3,30
	CRA_RES_AV	0,36	0,46	0,77	0,29	0,51	0,71	0,47	0,10	1,60

Tableau 34 : Résultats issus de l'analyse du fer sur le Crazius

Aucun référentiel officiel n'excite à ce jour pour qualifier l'état des eaux du cours d'eau pour l'élément fer.

Figure 38 : Evolution des concentrations en fer au fil de l'eau du Crazius



Le centile 90 des concentrations en fer contenues dans les eaux du Crazius s'avère être plus important sur la station de référence « CRA_AM ». Nous constatons une augmentation significative de la concentration en fer sur la station « CRA_RES_AM » en décembre 2021. Du fait d'une concentration en fer plus faible sur les stations aval nous pouvons en déduire que le rejet Imerys n'a pas d'incidence sur le Crazius avec cet élément chimique.

6.9 Analyse du manganèse

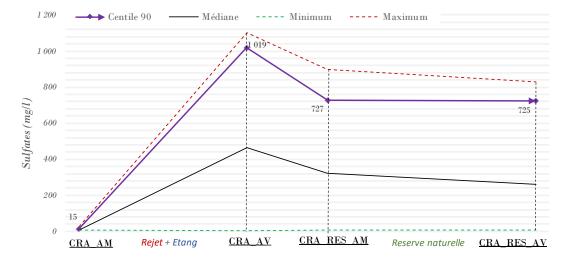
		<u>2019</u>	<u>2020</u>	<u>2021</u>	2022	<u>2023</u>	Centile 90	Médiane	Minimum	Maximum
	CRA_AM	0,14	0,03	0,02	0,06	0,02	0,14	0,02	0,01	0,22
Manganàsa (m. s/l)	CRA AV	1,51	1,19	1,03	1,18	0,59	1,84	0,67	0,06	2,23
Manganèse (mg/l)	CRA_RES_AM	0,61	0,65	0,52	0,40	0,20	0,80	0,33	0,05	1,36
	CRA_RES_AV	0,47	0,49	0,42	0,50	0,15	0,61	0,26	0,05	1,11

Tableau 35 : Résultats issus de l'analyse de l'élément manganèse sur le Crazius

Aucun référentiel officiel n'excite à ce jour pour qualifier l'état des eaux du cours d'eau pour l'élément manganèse.

Figure 39 : Evolution des concentrations en manganèse au fil de l'eau du Crazius

Les concentrations en manganèse augmentent significativement en aval du rejet Imerys (facteur 13) avant de diminuer au fil de l'eau. Les plus fortes concentrations en manganèse ($> 2~\rm mg/l$) ont été relevées en fin d'étiage 2019 et 2022 sur la station « CRA_AV ». Les faibles débits du Crazius induisent une faible dilution des éléments chimiques. Le centile 90 des concentrations en manganèse calculé sur les relevés de 2019 à 2023 est de 1.83 mg/l sur la station « CRA_AV ».


6.10 Analyse des sulfates

		<u>2019</u>	<u>2020</u>	<u>2021</u>	<u>2022</u>	<u>2023</u>	Centile 90	Médiane	Minimum	Maximum
Sulfates (mg/l) CRA_A	CRA_AM	10,80	8,95	14,65	11,13	8,98	14,60	9,00	5,60	28,00
	CRA_AV	792,25	632,50	620,00	783,33	251,58	1018,90	465,00	45,00	1100,00
	CRA_RES_AM	527,75	460,00	425,00	576,67	174,25	726,90	321,50	8,90	900,00
	CRA_RES_AV	559,50	417,50	372,50	516,67	158,75	724,80	260,00	36,00	830,00

Tableau 36 : Résultats issus de l'analyse des sulfates sur le Crazius

A l'image du manganèse, nous constatons une augmentation significative des concentrations en sulfates en aval du rejet Imerys (facteur 68) avant de diminuer progressivement au fil de l'eau. Les plus fortes concentrations en sulfates ($> 1000~\rm mg/l$) ont été relevées en juin et septembre 2019 ainsi qu'en mai 2021 et 2022. Le centile 90 des concentrations en sulfates calculé sur les relevés de 2019 à 2023 est de 1018,9 mg/l sur la station « CRA_AV ».

Aucun référentiel officiel n'excite à ce jour pour qualifier l'état des eaux du cours d'eau pour les sulfates.

Figure 40 : Evolution des concentrations en sulfates au fil de l'eau du Crazius

Les résultats de l'analyse des éléments <u>sulfates</u>, <u>manganèse</u> et <u>conductivité</u> issue des données acquises entre 2019 et 2023 témoignent d'une incidence significative du rejet Imerys sur le Crazius. Les concentrations des autres paramètres analysés sont de même ordre de grandeur ou inferieurs à celles relevées sur la station de référence « CRA_AM ». Le rejet Imerys n'a donc pas d'influence dans les eaux du Crazius sur ces paramètres (pH, MES, DCO, fer, aluminium, nitrates, phosphore).

7 Conclusion et discussion du suivi écologique

L'étude menée sur le Crazius entre 2019 et 2023 à travers sa biologie et sa physico-chimie a permis d'apporter certains éléments de réponses concernant l'incidence de l'activité d'Imerys Glomel sur l'écologie du milieu naturel récepteur du rejet.

7.1 Bilan du suivi 2019 - 2023

Les résultats issus du calcul des indices biologiques en vigueurs tels que l'I2M2 (Indice Invertébrés Multi-Métriques) et l'IBD (Indice Biologique Diatomique) ne laissent apparaître aucune perturbation significative de l'écologie du Crazius. Au regard des scores indiciels, l'ensemble des stations étudiées sur le Crazius sont classées en bon état biologique avec l'I2M2 et en très bon état biologique avec l'IBD selon l'arrêté ministériel du 9 octobre 2023 modifiant celui du 25 janvier 2010.

<u>L'analyse des peuplements d'invertébrés</u> aquatiques inventoriés dans l'application des normes NF T90-388 et NF T90-333 a néanmoins permis de mettre en évidence un **impact du rejet Imerys** sur deux groupes faunistiques : les **Amphipodes** et les **Ephéméroptères**. Il est constaté une **diminution significative des effectifs** de ces deux groupes taxinomiques en aval du rejet Imerys chaque année (cf. page 18 et page 20). Les autres invertébrés aquatiques ne semblent pas être influencés par le rejet Imerys.

<u>L'analyse des cortèges diatomiques</u> révèle une proportion des **formes tératogènes plus importante en aval** du rejet Imerys qui peut en être l'explication. Il est également remarqué une **diminution significative de la richesse spécifique** des diatomées sur le Crazius aval comparativement au nombre d'espèces inventoriées en amont. La cause de cette diminution brutale du nombre d'espèces inventoriés peut être une conséquence du rejet Imerys et/ou du plan d'eau de Crazius.

<u>L'analyse des peuplements piscicoles</u> ne semblent **pas révéler une influence du rejet Imerys** sur l'espèce cible (*Salmo truita*) inventoriée dans plusieurs classes d'âge en aval du rejet Imerys. Aucune truite fario n'a été inventoriée sur la station amont du fait d'une **rupture de la continuité écologique** au niveau de la retenue artificielle du Moulin de Crazius. La **loche franche**, espèce accompagnatrice de la truite fario, est en revanche **absente des relevées faunistiques** des deux stations situées en aval du rejet Imerys.

L'analyse de la physico-chimie des sédiments laisse apparaître des teneurs en manganèse et en sulfates significatives chaque année en aval du rejet Imerys pour des profils granulométriques semblables.

L'analyse de la physico-chimie des eaux révèle également des concentrations en sulfates et en manganèse élevées sur le Crazius aval. Les autres paramètres analysés ne semblent pas être déclassant pour le Crazius et/ou non liés au rejet Imerys.

Même si les éléments cités ci-dessus sont révélateurs d'une incidence avérée de l'activité d'Imerys Glomel sur l'écologie du Crazius, il est difficile de dissocier et de quantifier l'influence du rejet Imerys et celle de la retenue artificielle du Moulin de Crazius. Bien que des apports souterrains soient toujours possibles, il semble toutefois que l'hypothèse la plus vraisemblable pour expliquer les variations interannuelles et interstationnelles des teneurs en éléments traces métalliques dans le Crazius serait une incidence du plan d'eau de Crazius dans lequel sont rejetés les effluents Imerys depuis de nombreuses années. Les sédiments du plan d'eau, plus ou moins anoxiques, pourraient être à l'origine d'un relargage périodique et plus ou moins prononcé des ETM. Des investigations complémentaires sur la retenue artificielle permettraient de qualifier la composition chimique des sédiments et de quantifier les concentrations d'ETM dans les sédiments du plan d'eau.

La retenue artificielle a forcément une incidence sur le régime thermique des eaux du Crazius (réchauffement) pouvant ainsi perturber l'écosystème du Crazius tant sur le plan physico-chimique que biologique. De plus, les inventaires piscicoles ont mis en évidence l'absence totale de truite fario sur la station amont qui est vraisemblablement la conséquence d'une rupture de la continuité écologique au niveau de la retenue artificielle. Ce point de blocage piscicole empêche les géniteurs de remonter le cours d'eau pour se reproduire en amont du plan d'eau.

7.2 Proposition d'un futur suivi

Au vu des éléments résultants du suivi écologique $2019 \rightarrow 2023$ et de l'exploitation d'une **nouvelle fosse** d'extraction sur le site de Glomel en 2024 (fosse n°4 d'une surface d'environ 10 ha) avec l'extension des zones de

stockage de stériles, il apparait nécessaire et primordial de continuer à suivre l'état écologique du Crazius. De plus, Imerys, met en place en 2024, une nouvelle unité de traitement des eaux par ozonation pour l'abattement du manganèse. Il sera donc nécessaire de suivre les effets avenirs de ce nouveau procédé de traitement sur l'écologie du Crazius aussi bien sur le plan physico-chimique que biologique.

Compte tenu du contexte, Biometra suggère une **poursuite des opérations** relatives au suivi écologique du Crazius tout en adaptant et en complétant ce suivi.

Sur le plan physico-chimique :

- → Poursuite du suivi physico-chimique des eaux superficielles sur les mêmes sites que le suivi précédent pour des raisons de comparabilité interannuelle en ajoutant 2 nouveaux sites au suivi situés de part et d'autre du rejet Imerys sur le ruisseau de Kergroaz.
- → Poursuite du suivi physico-chimique des sédiments du Crazius sur les mêmes sites que le suivi précédent en ajoutant 2 sites de prélèvement amont/aval rejet Imerys sur le ruisseau de Kergroaz. L'ajout de ces stations permettra de caractériser et de quantifier l'influence du rejet Imerys sur le ruisseau de Kergroaz. De plus, la station amont du ruisseau de Kergroaz permettra d'ajouter un site de référence (non impacté par le rejet Imerys) afin de préciser le bruit de fond géochimique local au même titre que la station « CRA_AM ».

 L'analyse était portée sur la phase aqueuse des sédiments (fraction dissoute biodisponible). L'eau interstitielle des sédiments et les métaux qui s'y trouvent peuvent être facilement remobilisables lors de forts épisodes pluvieux (crues). La concentration des métaux peut alors fortement varier dans le temps en fonction des conditions hydrologiques, ce qui explique certaines différences interannuelles observées lors du suivi sédimentaire 2019-2023. Afin de limiter les variations interannuelles dépendantes des conditions hydrologiques, Biometra préconise de réaliser des analyses sur les sédiments bruts (phase particulaire) et non sur l'eau interstitielle contenue dans les sédiments (phase aqueuse).
 - Un monitoring sédimentaire est à prévoir sur la **retenue artificielle du Moulin de Crazius** afin de connaître la composition des sédiments du plan d'eau.
- → Afin de caractériser l'influence de la **retenue artificielle du Moulin de Crazius** sur le régime thermique des eaux du cours d'eau éponyme, Biometra propose un **suivi thermique** du plan d'eau et du ruisseau de Crazius à l'aide d'enregistreur autonomes (pas de temps d'enregistrement : 1h) sur les mêmes sites d'étude concernés par les autres prestations.

Sur le plan biologique:

- Poursuite des inventaires invertébrés aquatiques au même titre que le précédent suivi en gardant une localisation des sites identique pour des raisons de comparabilité interannuelle. Nous constatons cependant des différences habitationnelles entre les sites étudiés. La station « CRA_AV » apparait plus biogène pour la faune benthique d'après l'indice habitat (Verneaux) calculé. Cette station obtient un coefficient morphodynamique² de 16.12/20 contre 14.10, 13.73 et 12.93 respectivement sur les autres sites (cf. page 16). Afin de limiter le biais d'ordre habitationnel dans l'analyse, en complément des inventaires MPCE, Biometra propose de réaliser un échantillon supplémentaire (point faune) prélevé sur un habitat (substrat/vitesse) commun aux quatre sites d'études. Une analyse interstationnelle ciblée pourra être portée sur ces échantillons.
- → Poursuite des inventaires diatomiques au même titre que le précédent suivi en gardant une localisation des sites identique pour des raisons de comparabilité interannuelle.
- → Poursuite des inventaires piscicoles sur le Crazius mais avec la mise en place d'un protocole d'échantillonnage normé (IPR) permettant le calcul d'un état biologique au même titre que l'IBD et l'I2M2. Par ailleurs, le précédent suivi piscicole ne ciblait que la truite fario (espèce patrimoniale), les autres espèces étaient seulement indiquées comme absentes ou présentes dans les inventaires. Biometra propose donc de réaliser

² Coefficient morphodynamique: Indice de capacité d'accueil d'une station pour les invertébrés aquatiques (/20)

un échantillonnage des poissons à l'électricité sur les quatre stations du Crazius conformément aux normes NF T90-344³, XP T90-383⁴, NF EN 14011⁵ et NF EN 14962⁶. Le protocole d'échantillonnage s'appuie sur la « Notice de présentation et d'utilisation de l'IPR » (ONEMA, 2006) ainsi que sur le « Guide pratique de mise en œuvre des opérations de pêche à l'électricité » (Belliard et al., ONEMA, 2012). Compte tenu de la taille du cours d'eau (<2.5 m) la prospection sera complète sur des sites d'une longueur approximatives correspondant à 20 fois la largeur au miroir. Biometra préconise la réalisation d'un deuxième passage. Tous les poissons capturés feront l'objet d'une biométrie (identification, dénombrement, taille et poids). L'état sanitaire des peuplements piscicoles sera caractérisé par l'occurrence de poissons présentant une pathologie par rapport aux individus sains. Une synthèse des pathologies observées sera ainsi réalisée sur les différentes stations.

Au vu des résultats issus du précédent suivi, une attention particulière sera portée sur l'espèce *Barbatula* barbatula absente des inventaires issus des deux stations situées en aval du rejet Imerys.

Les opérations seront réalisées annuellement à l'exception de la physico-chimie des eaux effectuée trimestriellement. Pour des raisons de comparabilité interannuelle, les interventions devront être réalisées à la même période de l'année que celles du précédent suivi (plus ou moins 15 jours). Biometra suggère en revanche de réaliser les inventaires piscicoles en début d'étiage (juillet), et non septembre comme effectués précédemment, afin d'assurer le suivi piscicole annuel en évitant d'intervenir dans des conditions hydrologiques et physico-chimiques critiques pour les espèces piscicoles.

Afin de compléter l'expertise menée sur le Crazius sur le plan biologique et physico-chimique, un **diagnostic** morphologique est envisagé sur l'ensemble du cours principal du Crazius. La réalisation d'une étude continuité est également envisagé par Imerys sur le plan d'eau du Moulin de Crazius.

Document rédigé par Jérémie Blémus - Hydroécologue

BIOMETRA

14 rue Brizeux – 56800 Ploërmel Tel : +33(0)6 98 69 77 68 Siret 98301277400011 – APE 7112B

46

³ NF T90-344 : Détermination de l'indice poissons rivière

⁴ XP T90-383 : Échantillonnage des poissons à l'électricité dans le cadre des réseaux de suivi des peuplements de poissons en lien avec la qualité des cours d'eau

⁵ NF EN 14011 : Echantillonnage des poissons à l'électricité

⁶ NF EN 14962 : Guide sur le domaine d'application et la sélection des méthodes d'échantillonnage de poissons

Table des abréviations et des acronymes

- ASPT: Average Score Per Taxon
- D : Dominance de Simpson
- DCE: Directive Cadre sur l'Eau
- EPT: Ephéméroptères, Plécoptères, Trichoptères
- EQR: Ecological Quality Ratio
- G: Grand cours d'eau
- GFI: Groupe Faunistique Indicateur
- GOLD: Gastéropodes, Oligochètes, Diptères
- H: Hauteur d'eau
- H': Diversité de Shannon
- HER : Hydro Eco Région
- I2M2 : Indice Invertébrés Multi Métrique
- IBD : Indice Biologique Diatomée
- IBGN : Indice Biologique Global Normalisé
- IBG-DCE: Indice Biologique Global compatible Directive Cadre sur l'Eau
- IPS : Indice de Polluo Sensibilité
- J : Equitabilité de Piélou
- M: Cours d'eau Moyen
- MPCE : Macroinvertébrés en Petits Cours d'Eau
- MGCE : Macroinvertébrés en Grands Cours d'Eau
- Nb : Nombre
- Ni : Nombre d'individus
- ONEMA: Office National de l'Eau et des Milieux Aquatiques
- OFB : Office Français pour la Biodiversité
- P: Petit cours d'eau
- RCS : Réseau de Contrôle et de Surveillance
- S: Richesse taxinomique
- TP: Très Petit cours d'eau
- TG: Très Grand cours d'eau

Table des illustrations

Liste des photos	
Photo 1 : Vue site « CRA_AM » depuis l'aval (2022)	3
Photo 2 : Vue site « CRA_AM » depuis l'amont (2022)	
Photo 3 : Vue site « CRA_AV » depuis l'aval (2022)	
Photo 4 : Vue site « CRA-AV » depuis l'amont (2022)	
Photo 5 : Vue site « CRA_R_AM » depuis l'aval (2022)	
Photo 6 : Vue site « CRA_R_AM » depuis l'amont (2022)	
Photo 7 : Vue site « CRA_RES_AV » depuis l'aval (2022)	
Photo 8 : Vue site « CRA_RES_AV » depuis l'amont (2022)	
Liste des tableaux	
Tableau 1 : Périodicité des relevés biologiques et physico-chimique sur le Crazius	7
Tableau 2 : Résultats des indices biologiques invertébrés obtenus sur la station « CRA_AM »	
Tableau 3 : Résultats des indices de structure des peuplements obtenus sur la station « CRA_AM »	
Tableau 4 : Résultats des indices biologiques invertébrés obtenus sur la station « CRA_AV »	
Tableau 5 : Résultats des indices de structure des peuplements obtenus sur la station « CRA_AV »	
Tableau 6 : Résultats des indices biologiques invertébrés obtenus sur la station « CRA_RES_AM »	
Tableau 7 : Résultats des indices de structure des peuplements obtenus sur la station « CRA_RES_AM »	
Tableau 8 : Résultats des indices biologiques invertébrés obtenus sur la station « CRA_RES_AV »	
Tableau 9 : Résultats des indices de structure des peuplements obtenus sur la station « CRA_RES_AV »	
Tableau 10 : Résultats moyens des indices biologiques invertébrés obtenus sur les 4 stations du Crazius	
Tableau 11 : Résultats moyens des indices de structure des peuplements obtenus sur les 4 stations du Crazius	16
Tableau 12 : Résultats des indices biologiques diatomées obtenus sur la station « CRA_AM »	21
Tableau 13 : Résultats des indices biologiques diatomées obtenus sur la station « CRA_AV »	23
Tableau 14 : Résultats des indices biologiques diatomées obtenus sur la station « CRA_RES_AM »	25
Tableau 15 : Résultats des indices biologiques diatomées obtenus sur la station « CRA_RES_AV »	27
Tableau 16 : Résultats moyens des indices biologiques diatomées obtenus sur les 4 stations du Crazius	
Tableau 17 : Effectif des truites fario inventoriées entre 2019 et 2021 sur le Crazius	
Tableau 18 : Résultats de captures des espèces d'accompagnement de la TRF sur le Crazius	33
Tableau 19 : Résultats des analyses granulométriques obtenus sur le Crazius entre 2019 et 2023	
Tableau 20 : Résultats des analyses physico-chimiques des sédiments obtenus sur le Crazius	
Tableau 21 : Résultats issus de l'analyse du pH sur le Crazius	
Tableau 22 : Classes d'état DCE - pH	
Tableau 23 : Résultats issus de l'analyse de la conductivité sur le Crazius	
Tableau 24 : Classes d'état SEQ-Eau - conductivité	
Tableau 25 : Résultats issus de l'analyse de la DCO sur le Crazius	
Tableau 26 : Classes d'état SEQ-Eau - DCO	
Tableau 20 : Classes u état SEQ-Eau - DCO	
Tableau 28 : Classes d'état DCE - Nitrates	
Tableau 29 : Résultats issus de l'analyse du phosphore total sur le Crazius	
Tableau 30 : Classes d'état DCE – Phosphore	
Tableau 31 : Résultats issus de l'analyse des MES sur le Crazius	
Tableau 32 : Classes d'état DCE - Nitrates	
Tableau 33 : Résultats issus de l'analyse de l'élément aluminium sur le Crazius	
Tableau 34 : Résultats issus de l'analyse du fer sur le Crazius	
Tableau 35 : Résultats issus de l'analyse de l'élément manganèse sur le Crazius	
Tableau 36 : Résultats issus de l'analyse des sulfates sur le Crazius	42

Liste des figures Figure 10: Evolution des indices IBG et I2M2 sur la station « CRA_AM » entre 2019 et 2023......9 Figure 11: Evolution des indices IBG et I2M2 sur la station « CRA_AV »......11 Figure 14: Evolution des scores IBG et I2M2 attribués aux stations du Crazius sur la période 2019 - 2023 17 Figure 20 : Profils écologiques des cortèges diatomiques échantillonnés sur la station « CRA_ RES_AM » 26 Figure 22 : Profils écologiques des cortèges diatomiques échantillonnés sur la station « CRA_ RES_AV »....... 28 Figure 23 : Evolution des scores IBG et I2M2 attribués aux stations du Crazius sur la période 2019 - 2023 29

Annexes

 $\underline{Annexe~1}: Listes~faunistiques~invertébrés~aquatiques~des~quatre~stations~du~Crazius~de~2019~\grave{a}~2023$

 $\underline{\mathbf{Annexe}\ 2}$: Listes floristiques diatomiques des quatre stations du Crazius de 2019 à 2023

$\underline{Annexe\ 1}: Listes\ faunistiques\ invertébrés\ aquatiques\ des\ quatre\ stations\ du\ Crazius\ de\ 2019\ \grave{a}\ 2023$

CRA_AM - 2019

			GN	Р	12	И2	PHASE <u>A</u>	PHASE B	PHASE <u>C</u>	
Ordre/Classe	Famille	Taxon (code)	GFI_IBGN	BMWP	OS_I2M2	PS_I2M2	P1 P2 P3 P4	P5 P6 P7 P8	P9 P10 P11 P12	Σ
	Chloroperlidae	Siphonoperla (174)	9	10	0,00	0,00	1	11		12
	Leuctridae	Leuctra (69)	7	10	0,00	0,00	92	266	245	603
Plecoptera	Nemouridae	Nemouridae (20)	6	7	0,00	0,00			6	6
	Nemouridae	Nemoura (26)	6	7	0,00	0,00	8			8
	Perlodidae	Isoperla (140)	9	10	0,00	0,00		1		1
	Glossosomatidae	Glossosomatidae (189)	7	-	0,00	0,20			6	6
	Giossosomatidae	Agapetus (191)	7	-	0,00	0,25			5	5
	Goeridae	Goeridae (286)	7	10	0,00	0,00	1		4	5
	Goeridae	Silo (292)	7	10	0,00	0,00			5	5
T	Hydropsychidae	Hydropsyche (212)	3	5	0,00	0,50		1		1
Trichoptera	Leptoceridae	Athripsodes (311)	4	10	0,00	0,00	11	30	10	51
	Limnephilidae	Limnephilinae (3163)	3	7	0,00	0,01	20	1	2	23
	Polycentropodidae	Plectrocnemia (228)	4	7	0,00	0,40	2	2		4
	Rhyacophilidae	Rhyacophila (183)	4	-	0,00	0,11		1	2	3
	Sericostomatidae	Sericostoma (322)	6	10	0,00	0,17	39	12	38	89
	Baetidae	Baetis (364)	2	4	0,00	0,60	1	6		7
	Ephemeridae	Ephemera (502)	6	-	0,00	0,00	12	21	46	79
P 1		Heptageniidae (399)	5	10	0,00	0,04		4		4
Ephemeroptera	Heptageniidae	Ecdyonurus (421)	5	10	0,00	0,00		2	3	5
		Leptophlebiidae (473)	7	10	0,00	0,03	109	16	5	130
	Leptophlebiidae	Habrophlebia (491)	7	10	0,00	0,00	164	9	22	195
Hemiptera	Veliidae	Veliidae (743)	-	-	0,00	0,42	6			6
Tromptoru .	Dytiscidae	Colymbetinae (2395)		5	0,00	0,15	1			1
	,	Dupophilus (620)	2	5	0,00	0,00		1		1
		Elmis (618)	2	5	0,00	0,00	6	8	13	27
Coleoptera	Elmidae	Limnius (623)	2	5	0,00	0,00	7	35	34	76
		Oulimnius (622)	2	5	0,00	0,00		1		1
	Hydraenidae	Hydraena (608)	Ī.	Ť	0,00	0,25	2	18	8	28
	Athericidae	Athericidae (838)	-	<u> </u>	0,00	0,00	_		1	1
	Ceratopogonidae	Ceratopogonidae (819)	-	-	0,00	0,45	2	3	2	7
	Chironomidae	Chironomidae (807)	1	2	0,10	0,51	658	105	180	943
	Empididae	Empididae (831)	-	l-	0,00	0,35	2	100	100	2
Diptera	Limoniidae	Limoniidae (757)	-		0,00	0,25	4	82	58	144
	Psychodidae	Psychodidae (783)			0,20	0,75	-	02	1	1
	Simuliidae	Simuliidae (801)	Ė	5	0,00	0,60		70	40	110
	Tabanidae	Tabanidae (837)		-	0,00	0,00	4	3	4	11
	Calopterygidae	Calopteryx (650)		Ë	0,00	0,00	2	3	*	2
Odonata	Cordulegasteridae			Ė	0,00	0,00	4	6	6	16
Magalantara	Sialidae	Cordulegaster (687) Sialis (704)	-	-	0,00		7	1	1	2
Megaloptera			2	-			354	173	80	-
Amphipoda	Gammaridae	Gammarus (892) Pisidium (1043)	2	6 3	1,00	1,00 0,50	334	6	6	12
Bivalvia	Sphaeriidae		-	3	-	_	2	U	U	
Gastropoda	Ancylidae	Ancylus (1028)	2	-	0,00	0,00	2		,	2
Pharyngobdelliformes	Erpobdellidae	Erpobdellidae (928)	1	3	0,00	0,00		e	1	1
Oligochaeta	_	Oligochaeta (933)	1	1	0,00	0,73	6	2	4	12
Nemathelmintha		Nemathelmintha (3111)	-	-	0,00	0,25		1		1
Ostracoda		Ostracoda (3170)	-	-				000	1	1
							1520	898	839	3257

CRA AM - 2020

			GN	Ъ	И2	M2	PHASE A		_		PHA	SE <u>B</u>	1		PHA	SE C			
Ordre/Classe	Famille	Taxon (code)	GFI_IBGN	BMWP	OS_I2M2	PS_I2M2	P1	P2	Р3	P4	P5	P6	P7	Р8	P9	P10	P11	P12	Σ
	Chloroperlidae	Siphonoperla (174)	9	10	0,00	0,00						1							1
Plecoptera	Leuctridae	Leuctra (69)	7	10	0,00	0,00	10	2	7	7	80	48	9	40	24	24	64	27	342
1 lecoptera	Nemouridae	Nemoura (26)	6	7	0,00	0,00		187	4	10		6	1		16	2		1	227
	Perlodidae	Isoperla (140)	9	10	0,00	0,00					1								1
	Glossosomatidae	Agapetus (191)	7	-	0,00	0,25										1			1
	Hydropsychidae	Hydropsyche (212)	3	5	0,00	0,50					2			2					4
	Limnephilidae	Limnephilinae (3163)	3	7	0,00	0,01	1									1			2
Trichoptera	Philopotamidae	Philopotamidae (206)	8	8	0,00	0,00					1			1					2
	D-1	Polycentropodidae (223)	4	7	0,00	0,57		2		2									4
	Polycentropodidae	Plectrocnemia (228)	4	7	0,00	0,40			1										1
	Sericostomatidae	Sericostoma (322)	6	10	0,00	0,17	3					1	2	1			2	2	11
	Baetidae	Baetis (364)	2	4	0,00	0,60				1	2			3					6
	Ephemerellidae	Ephemerella (450)	3	10	0,00	0,25		1										1	2
E 1 .	Ephemeridae	Ephemera (502)	6	-	0,00	0,00			3			1	1		2		2	4	13
Ephemeroptera	Heptageniidae	Ecdyonurus (421)	5	10	0,00	0,00			1		8						6		15
		Leptophlebiidae (473)	7	10	0,00	0,03	18	4	3	4	2	7	1	1	16	2	2	2	62
	Leptophlebiidae	Habrophlebia (491)	7	10	0,00	0,00						1			3		1		5
Hemiptera	Veliidae	Veliidae (743)	-	-	0,00	0,42		2											2
•	Dytiscidae	Colymbetinae (2395)		5	0,00	0,15		1		1									2
		Dupophilus (620)	2	5	0,00	0,00					10	1		1			5		17
		Elmis (618)	2	5	0,00	0,00		5		1	11			14	1		2		34
	Elmidae	Esolus (619)	2	5	0,00	0,00											1		1
Coleoptera		Limnius (623)	2	5	0,00	0,00	5		1		14	16	1	11		4	32	1	85
1		Oulimnius (622)	2	5	0.00	0.00							1						1
	Scirtidae	Helodes (636)	-	5	0,00	0,00			1		4								5
	Hydraenidae	Hydraena (608)	-		0.00	0,25		9	1	1	8	5		16			12		52
	Hydrochidae	Hydrochus (606)	-		0,00	0,25		6											6
	Chironomidae	Chironomidae (807)	1	2	0,10	0.51	64	48	64	40	16	32	120	4	48	192	16	32	676
	Dixidae	Dixidae (793)		-	0,00	0,00				2									2
	Empididae	Empididae (831)		-	0,00	0,35					1	1							2
Diptera	Limoniidae	Limoniidae (757)	-	-	0,00	0,25			3	1	12	13	12	22	1	2	64	2	132
1	Psychodidae	Psychodidae (783)	-	-	0,20	0,75		1						\vdash					1
	Simuliidae	Simuliidae (801)		5	0,00	0,60		\vdash		\vdash	10	6		192			56		264
	Tabanidae	Tabanidae (837)		-	0,00	0,00	4						1		1	1			7
	Calopterygidae	Calopteryx (650)	-	-	0,00	0,00	3	8		1					1				13
Odonata	Cordulegasteridae	Cordulegaster (687)			0,00	0,00				3	1	1	1	4		1	2	2	15
Amphipoda	Gammaridae	Gammarus (892)	2	6	1,00	1,00	20	202	3	7	32	22	11	16	16	10	32	96	467
Bivalvia	Sphaeriidae	Sphaerium (1044)	2	3	1,00	0,50			-		-			1		-	Н		1
Gastropoda	Ancylidae	Ancylus (1028)	2	-	0,00	0,00		\vdash						1			\vdash		1
Oligochaeta	7,	Oligochaeta (933)	1	1	0,00	0,73		\vdash	3	\vdash	2		3	Ė	1		\vdash	3	12
Hydracarina	⊣ -	Hydracarina (906)			0,20	0,75	1	2	_	2	3	1	1	\vdash	1	1	1	-	13
22) 01 110 111111		J			1.,=-	.,		78	37	_		87				Щ_	45		2510

CRA_AM - 2021

			36Л	VP	M2	I2M2		PHA	SE A			PHA	SE E			PHA	SE C	1	
Ordre/Classe	Famille	Taxon (code)	GFI_IBGN	BMWP	os_12M2	PS_12	P1	P2	Р3	P4	P5	P6	P7	P8	P9	P10	P11	P12	Σ
	Leuctridae	Leuctra (69)	7	10	0,00	0,00	17	13	32	6	21	3	7	9	123	46	10	1	28
Plecoptera	Nemouridae	Nemoura (26)	6	7	0,00	0,00	1	11											12
	Perlodidae	Isoperla (140)	9	10	0,00	0,00									1				1
	Glossosomatidae	Agapetus (191)	7	-	0,00	0,25							1						1
	Goeridae	Silo (292)	7	10	0,00	0,00									1				1
	Hydropsychidae	Hydropsyche (212)	3	5	0,00	0,50							4		2				6
	Limnephilidae	Limnephilinae (3163)	3	7	0,00	0,01	2	1			1				2	2			8
Trichoptera		Polycentropodidae (223)	4	7	0,00	0,57		3											3
	Polycentropodidae	Plectrocnemia (228)	4	7	0,00	0,40		5											5
		Polycentropus (231)	4	7	0,00	0,33		1											1
	Rhyacophilidae	Rhyacophila (183)	4	-	0,00	0,11		2	1	1	2	1							7
	Sericostomatidae	Sericostoma (322)	6	10	0,00	0,17	7	1	1			1	2			4		1	1'
		Baetidae (363)	2	4	0,09	0,65		3		2	4		2	3	7	1	10		33
	Baetidae	Baetis (364)	2	4	0,00	0,60	1	4		1	3	2		1	5	1	3		2
	Ephemeridae	Ephemera (502)	6	-	0,00	0,00						2		1	8	1	1		1
	1	Heptageniidae (399)	5	10	0,00	0,04		\vdash			1								1
Ephemeroptera	Heptageniidae	Ecdyonurus (421)	5	10	0,00	0,00			2						3				5
		Electrogena (3181)	5	10	0,00	0,00					3	\vdash		\vdash					3
		Leptophlebiidae (473)	7	10	0,00	0,03	16	5	3							2			2
	Leptophlebiidae	Habrophlebia (491)	7	10	0,00	0,00	10	۰	1			┢	-	\vdash		-	\vdash	\vdash	<u> </u>
Uamintana	Veliidae	Veliidae (743)	-	10	0,00	0,42		7	1	2			2						1
Hemiptera	Veilidae			-				1		4		_	-	\vdash			\vdash	\vdash	1
	Dytiscidae	Dytiscidae (527)		5	0,00	0,36 0,15		4		1		<u> </u>		<u> </u>		_	<u> </u>		- 1
		Colymbetinae (2395)	-		0,00			4		1	0	<u> </u>		,		,	,		₩
		Dupophilus (620)	2	5	0,00	0,00	,	07	,	0	2	,	,	1	6	1	1		1
Coleoptera	Elmidae	Elmis (618)	2	5	0,00	0,00	1	27	1	2	4	1	1	11	11	1	6	_	6
-		Limnius (623)	2	5	0,00	0,00	2	3	3	1	18	5	10	41	19	22	17	2	14
	0	Oulimnius (622)	2	5	0,00	0,00		<u> </u>			2	<u> </u>	2	<u> </u>	1	<u> </u>	<u> </u>		5
	Scirtidae	Helodes (636)	-	5	0,00	0,00		1				<u> </u>		<u> </u>		<u> </u>	_	_	<u> </u>
	Hydraenidae	Hydraena (608)	-	-	0,00	0,25	1	15	1	4	8			18	25	2	3		7
	Chironomidae	Chironomidae (807)	1	2	0,10	0,51	67	20	46	20	48	10	29	5	20	67	8	5	34
	Dixidae	Dixidae (793)	-	-	0,00	0,00		<u> </u>	1	2		<u> </u>		<u> </u>					3
	Empididae	Empididae (831)	-	-	0,00	0,35			1							<u> </u>]
Diptera	Limoniidae	Limoniidae (757)	-	-	0,00	0,25	3		4		12	28	14	30	12	37	40	9	18
	Psychodidae	Psychodidae (783)	-	-	0,20	0,75				6									6
	Simuliidae	Simuliidae (801)	-	5	0,00	0,60	3	1	12	40	74	15	32	400	4	5	70	20	67
	Tabanidae	Tabanidae (837)	-	-	0,00	0,00							1						1
Odonata	Calopterygidae	Calopteryx (650)	-	-	0,00	0,00		7					1						8
Опопата	Cordulegasteridae	Cordulegaster (687)	-	-	0,00	0,00				2	5			1	7		3	2	2
A ma m la im - I -	C	Gammaridae (887)	2	6	1,00	0,87	128	264	27	3	13	5	13	11	9	101	5		57
Amphipoda	Gammaridae	Gammarus (892)	2	6	1,00	1,00	64	208	29	2	19	1	5	25	24	27	8	1	41
Isopoda	Asellidae	Asellidae (880)	1	3	1,00	0,71		1	1										2
•		Sphaeriidae (1042)	2	3	1,00	0,50							2						2
Bivalvia	Sphaeriidae	Sphaerium (1044)	2	3	1,00	0,50												1]
	Lymnaeidae	Radix (1004)	2	3	0,00	0,00		\vdash	1								Н		
Gastropoda	Planorbidae	Planorbidae (1009)	2	3	0,00	0,03		1	Н								Н	Н]
Oligochaeta		Oligochaeta (933)	1	1	0,00	0,73		Ē						1	1	3		\vdash	
ongoinalta	 -	Hydracarina (906)			0,20	0,75	3	 	\vdash	\vdash	1	 	2	1	4	۲	├	 	1

5

CRA_AM - 2022

			GN	Ъ	42	PHASE		SE A]	PHA	SE B	<u> </u>		PHA	SE C			
Ordre/Classe	Famille	Taxon (code)	GFI_IBG	BMWP	os_izmz	PS_I2M2	P1	P2	Р3	P4	P5	P6	P7	Р8	P9	P10	P11	P12	Σ
DI	Leuctridae	Leuctra (69)	7	10	0,00	0,00	17		4	5	22	84	3	67	21	32	24		279
Plecoptera	Nemouridae	Nemoura (26)	6	7	0,00	0,00	1	2						1					4
	Glossosomatidae	Agapetus (191)	7	•	0,00	0,25											1		1
	Limnephilidae	Limnephilidae (276)	3	7	0,00	0,00				3		1			1	2			7
Trichoptera	Polycentropodidae	Plectrocnemia (228)	4	7	0,00	0,40	1				1				2			П	4
	Rhyacophilidae	Rhyacophila (183)	4	-	0,00	0,11					1			1					2
	Sericostomatidae	Sericostoma (322)	6	10	0,00	0,17			1	2		1				2	1	2	9
	Baetidae	Baetis (364)	2	4	0,00	0,60									2		1	П	3
	Ephemerellidae	Ephemerella (450)	3	10	0,00	0,25											1	П	1
D.1.	Ephemeridae	Ephemera (502)	6	-	0,00	0,00	1			8		5	3	4		3		1	25
Ephemeroptera	Heptageniidae	Ecdyonurus (421)	5	10	0,00	0,00					3				2		2	П	7
	T	Leptophlebiidae (473)	7	10	0,00	0,03	19	2	7	17		5		7		26		П	83
	Leptophlebiidae	Habrophlebia (491)	7	10	0,00	0,00	1											П	1
Hemiptera	Veliidae	Veliidae (743)	-	-	0,00	0,42		3				1							4
	Dytiscidae	Colymbetinae (2395)		5	0,00	0,15		3	1	3									7
	·	Dupophilus (620)	2	5	0,00	0,00					13			1	8	1	4	П	27
		Elmis (618)	2	5	0,00	0,00					6			1	1	4	15	П	27
	Elmidae	Esolus (619)	2	5	0,00	0,00											1	П	1
		Limnius (623)	2	5	0,00	0,00			2		15	15	1	8	52	3	27	1	124
Coleoptera		Oulimnius (622)	2	5	0,00	0,00						3							3
	Scirtidae	Helodes (636)	-	5	0,00	0,00		1										П	1
	Helophoridae	Helophorus (604)	-	-	0,00	0,25		1											1
	Hydraenidae	Hydraena (608)	-	-	0,00	0,25	2	5			17	32		4	25		13	П	98
	Hydrochidae	Hydrochus (606)	-	-	0,00	0,25		3										П	3
	Chironomidae	Chironomidae (807)	1	2	0,10	0,51	112	70	100	107	46	10	21	36	15	28	10	77	632
	Dixidae	Dixidae (793)	-	-	0,00	0,00		1										П	1
.	Empididae	Empididae (831)	-	-	0,00	0,35							1					П	1
Diptera	Limoniidae	Limoniidae (757)	-	-	0,00	0,25	3				28	30	1	6	34		18		120
	Psychodidae	Psychodidae (783)	-	-	0,20	0,75											1	П	1
	Simuliidae	Simuliidae (801)	-	5	0,00	0,60					25	2			40		25	П	92
	Calopterygidae	Calopteryx (650)	-	-	0,00	0,00		10						1				П	11
Odonata	Cordulegasteridae	Cordulegaster (687)	-	-	0,00	0,00	2			3	2	5							12
Planipennia	Sisyridae	Sisyra (856)	-	-	0,00	0,50		2										П	2
		Gammaridae (887)	2	6	1,00	0,87	27				3	6			11	28	13		88
Amphipoda	Gammaridae	Gammarus (892)	2	6	1,00	1,00	81		3	30	22	50	4	27	128	56	43	3	447
Gastropoda	Lymnaeidae	Radix (1004)	2	3	0,00	0,00	1					1					1	П	3
Oligochaeta	-	Oligochaeta (933)	1	1	0,00	0,73				1		1	3	1		1	2	1	10
								66	58			65	58			8]	16		2142

6

CRA_AM - 2023

<u> </u>			GN	Ь	12	12		PHA	SE A			PHA	SE E	<u> </u>		РНА	SE C		
Ordre/Classe	Famille	Taxon (code)	GFI_IBGN	BMWP	OS_I2M2	PS_I2M2	P1	P2	Р3	P4	P5	P6	Р7	P8	P9	P10	P11	P12	Σ
	Chloroperlidae	Chloroperla (170)	9	10	0,00	0,00									1				1
DI	Leuctridae	Leuctra (69)	7	10	0,00	0,00	1	5		16	5	93	13	2	15	3	4	1	158
Plecoptera	Nemouridae	Nemoura (26)	6	7	0,00	0,00			1					1			1	1	4
	Perlodidae	Isoperla (140)	9	10	0,00	0,00								1					1
	Glossosomatidae	Agapetus (191)	7	•	0,00	0,25						2				1			3
	Goeridae	Goera (287)	7	10	0,00	0,00				1		2	1	1		10	1		16
Trichoptera	Psychomyiidae	Psychomyiidae (238)	4	8	0,00	0,80					1								1
	Rhyacophilidae	Rhyacophila (183)	4	-	0,00	0,11						3							3
	Sericostomatidae	Sericostoma (322)	6	10	0,00	0,17		1					1						2
	Baetidae	Baetis (364)	2	4	0,00	0,60		1	1	2	2	18	6		15	2		2	49
F. 1	Ephemeridae	Ephemera (502)	6	-	0,00	0,00	1								2	1			4
Ephemeroptera	Heptageniidae	Ecdyonurus (421)	5	10	0,00	0,00				1		1		П					2
	Leptophlebiidae	Leptophlebiidae (473)	7	10	0,00	0,03	1	1		2									4
	F1 : 1	Elmis (618)	2	5	0,00	0,00				1	1	14	3			2	1		22
	Elmidae	Limnius (623)	2	5	0,00	0,00				3		22	8	2	9	12	21	1	78
6.1	Scirtidae	Helodes (636)	-	5	0,00	0,00					1								1
Coleoptera	Helophoridae	Helophorus (604)	-		0,00	0,25		1		2	3								6
	TT 1 .1	Limnebius (599)	-		0,00	0,25		1			2								3
	Hydraenidae	Hydraena (608)	-		0,00	0,25				7	4	23	12		24	1			71
	Chironomidae	Chironomidae (807)	1	2	0,10	0,51	64	102	23	36	45	55	10	430	27	7	166	59	1024
D: .	Dixidae	Dixidae (793)	-		0,00	0,00					1								1
Diptera	Limoniidae	Limoniidae (757)	-		0,00	0,25				5		61	108	6	192	38	8		418
	Simuliidae	Simuliidae (801)	-	5	0,00	0,60		23	1	3	3	27	31		1	59	1		149
Odonata	Cordulegasteridae	Cordulegaster (687)	-	-	0,00	0,00						1	1			3			5
Megaloptera	Sialidae	Sialis (704)		-	0,00	0,00			1										1
4 1 1		Gammarus (892)	2	6	1,00	1,00		82		8	4	42	22		160	46		1	365
Amphipoda	Gammaridae	Echinogammarus (888)	2	6	1,00	1,00	3			1				3			12		19
Bivalvia	Sphaeriidae	Pisidium (1043)	2	3	1,00	0,50	1							1				1	3
	-						403					10	99			9:	12		2414

CRA AV - 2019

CRA AV - 2019			GN	Ъ	И2	M2	PHASE <u>A</u>	PHASE <u>B</u>	PHASE <u>C</u>	
Ordre/Classe	Famille	Taxon (code)	GFI_IBGN	BMWP	OS_I2M2	PS_I2M2	P1 P2 P3 P4	P5 P6 P7 P8	P9 P10 P11 P12	Σ
	Leuctridae	Euleuctra (67)	7	10	0,00	0,00	3	34	32	69
Plecoptera	Leuetraae	Leuctra (69)	7	10	0,00	0,00	159	152	137	448
	Nemouridae	Nemoura (26)	6	7	0,00	0,00	42	1	3	46
	Glossosomatidae	Agapetus (191)	7	-	0,00	0,25			1	1
	Hydroptilidae	Hydroptila (200)	5	6	0,00	0,60	1	1	4	6
	Lepidostomatidae	Lepidostoma (305)	6	10	0,00	0,25	1			1
Trichontore	Leptoceridae	Mystacides (312)	4	10	0,00	0,00	1			1
Trichoptera	Polycentropodidae	Plectrocnemia (228)	4	7	0,00	0,40		1	2	3
	Rhyacophilidae	Rhyacophila (183)	4	-	0,00	0,11	1	1		2
	C	Sericostomatidae (321)	6	10	0,00	0,35		1		1
	Sericostomatidae	Notidobia (325)	6	10	0,00	0,67	3	1		4
	D .::1	Baetis (364)	2	4	0,00	0,60		1	1	2
г	Baetidae	Cloeon (387)	2	4	0,60	0,75			1	1
Ephemeroptera	Caenidae	Caenis (457)	2	7	0,00	0,75	2			2
	Ephemerellidae	Ephemerella (450)	3	10	0,00	0,25	1			1
	Dryopidae	Dryops (613)	-	5	0,00	0,00		1		1
		Elmis (618)	2	5	0,00	0,00	3	1	9	13
Coleoptera	Elmidae	Limnius (623)	2	5	0,00	0,00	4	11	34	49
1		Oulimnius (622)	2	5	0,00	0,00	22	8	28	58
	Hydraenidae	Hydraena (608)	-	-	0,00	0,25	3	1		4
	Athericidae	Athericidae (838)	-	-	0,00	0,00		2		2
	Ceratopogonidae	Ceratopogonidae (819)	-	-	0,00	0,45	3		2	5
	Chironomidae	Chironomidae (807)	1	2	0,10	0,51	613	170	37	820
Diptera	Empididae	Empididae (831)	-	-	0,00	0,35		1		1
•	Limoniidae	Limoniidae (757)	-	-	0,00	0,25	1	6	2	9
	Psychodidae	Psychodidae (783)	-	-	0,20	0,75	1			1
	Simuliidae	Simuliidae (801)	-	5	0,00	0,60	5	77	99	181
	Calopterygidae	Calopteryx (650)	-	-	0,00	0,00	1			1
	Coenagrionidae	Coenagrionidae (658)	-	6	0,00	0,20	1			1
Odonata	Cordulegasteridae	Cordulegaster (687)	-	-	0,00	0,00	3	1		4
	Platycnemididae	Platycnemis (657)	-	-	0,00	0,00	1			1
Megaloptera	Sialidae	Sialis (704)	-	-	0,00	0,00	2			2
Amphipoda	Gammaridae	Gammarus (892)	2	6	1,00	1,00	1			1
Bivalvia	Sphaeriidae	Pisidium (1043)	2	3	1,00	0,50	59	2		61
	Ancylidae	Ancylus (1028)	2	-	0,00	0,00		1		1
Gastropoda	Hydrobiidae	Potamopyrgus (978)	2	3	1,00	0,75	1980	534	1380	3894
Tricladida	Dugesiidae	Dugesiidae (1055)	-	-	0,00	0,00	1	1		2
Oligochaeta	Ŭ	Oligochaeta (933)	1	1	0,00	0,73	32	3	1	36
Hydracarina	1-	Hydracarina (906)	-	-	0,20	0,75		1		1
Ostracoda	1	Ostracoda (3170)	-	-			10			10
	I.						2960	1014	1773	5747

CRA AV - 2020

<u>CRA_AV • 2020</u>			СN	Ь	42	ZW PHASE A PHASE B					1		PHA	SE C	1				
Ordre/Classe	Famille	Taxon (code)	GFI_IBGN	BMWP	OS_I2M2	PS_I2M2	P1	P2	Р3	P4	P5	P6	P7	Р8	P9	P10	P11	P12	Σ
Plecoptera	Leuctridae	Leuctra (69)	7	10	0,00	0,00	17	86	25	28	80	50	5	31	90	23	40	7	482
гесориега	Nemouridae	Nemoura (26)	6	7	0,00	0,00	3	40	1	3		2	1	2	2				54
	Brachycentridae	Brachycentrus (265)	8	10	0,00	0,00								1					1
	Glossosomatidae	Agapetus (191)	7	-	0,00	0,25				1		2					1		4
	Goeridae	Goeridae (286)	7	10	0,00	0,00							1						1
	Hydropsychidae	Hydropsyche (212)	3	5	0,00	0,50	88			6	88		1	8	39	3	13	3	249
Tuishautana	Hydroptilidae	Hydroptila (200)	5	6	0,00	0,60										1			1
Trichoptera	Lepidostomatidae	Lepidostoma (305)	6	10	0,00	0,25						2	1	1		1			5
	Leptoceridae	Mystacides (312)	4	10	0,00	0,00			1										1
	Limnephilidae	Limnephilinae (3163)	3	7	0,00	0,01		11	1								2		14
	Rhyacophilidae	Rhyacophila (183)	4	-	0,00	0,11					1				2		1		4
	Sericostomatidae	Sericostomatidae (321)	6	10	0,00	0,35											3		3
Hemiptera	Gerridae	Gerris (735)		-	0,00	0,60										1			1
		Dupophilus (620)	2	5	0,00	0,00									1		1		2
		Elmis (618)	2	5	0,00	0,00	2	1	2	5	4	4	1	3		2	3		27
Coleoptera	Elmidae	Limnius (623)	2	5	0,00	0,00	4	10	6	4	5	25	29	5	24	3	7	5	127
•		Oulimnius (622)	2	5	0,00	0,00	18	8	5	6	6	5	4	6	9	6	5	6	84
	Hydraenidae	Hydraena (608)	-	-	0,00	0,25	1			1	7			1	3				13
	Chironomidae	Chironomidae (807)	1	2	0,10	0,51		63	11	84	3		8	1	9			8	187
Diptera	Limoniidae	Limoniidae (757)	-	-	0,00	0,25	1				1	6		1	7				16
	Simuliidae	Simuliidae (801)	-	5	0,00	0,60	2			3	3				3				11
	Calopterygidae	Calopteryx (650)	-		0,00	0,00			1	2						2			5
Odonata	Coenagrionidae	Coenagrionidae (658)	-	6	0,00	0,20												1	1
	Cordulegasteridae	Cordulegaster (687)	-	-	0,00	0,00			1									П	1
Megaloptera	Sialidae	Sialis (704)	-	-	0,00	0,00			1										1
Amphipoda	Gammaridae	Gammarus (892)	2	6	1,00	1,00		1											1
Bivalvia	Sphaeriidae	Pisidium (1043)	2	3	1,00	0,50											1	Н	1
	Ancylidae	Ancylus (1028)	2	-	0,00	0,00		1							1			Н	2
Gastropoda	Hydrobiidae	Potamopyrgus (978)	2	3	1,00	0,75	5	446	141	49	8	21	141	8	40		93	27	979
Rhynchobdelliformes	Glossiphoniidae	Glossiphoniidae (908)	1	3	0,61	0,08		4					1				2	1	8
Oligochaeta		Oligochaeta (933)	1	1	0,00	0,73			3			1		14	3	2		6	29
Hydracarina	-	Hydracarina (906)		-	0,20	0,75		1			2	\vdash		\vdash		\vdash		\square	3
<i>J</i>	1				-	-		12	04			60	01			5	13		2318

CRA_AV - 2021

<u>CRA_AV - 2021</u>			GN	Д.	И2	M2		PHA	SE <u>A</u>	<u>.</u>		PHA	SE B	<u> </u>		PHA	SE C		
Ordre/Classe	Famille	Taxon (code)	GFI_IBGN	BMWP	OS_I2M2	PS_I2M2	P1	P2	Р3	P4	P5	Р6	P7	Р8	P9	P10	P11	P12	Σ
	Leuctridae	Leuctra (69)	7	10	0,00	0,00	184	344	67	48	168	80	32	75	55	101	107	108	1369
Dl		Nemouridae (20)	6	7	0,00	0,00	1												1
Plecoptera	Nemouridae	Nemoura (26)	6	7	0,00	0,00	1	2	9		1		2					4	19
		Protonemura (46)	6	7	0,00	0,00	3												3
	Brachycentridae	Brachycentrus (265)	8	10	0,00	0,00			1			1		3					5
	Glossosomatidae	Agapetus (191)	7	-	0,00	0,25				1	6	1		3			1		12
	Goeridae	Silo (292)	7	10	0,00	0,00									1				1
	IIl	Hydropsychidae (211)	3	5	0,00	0,39									16		2		18
	Hydropsychidae	Hydropsyche (212)	3	5	0,00	0,50	112		21	18	5	1	2		51		25	1	236
T.:	Lepidostomatidae	Lepidostoma (305)	6	10	0,00	0,25								3				1	4
Trichoptera	Leptoceridae	Mystacides (312)	4	10	0,00	0,00							3					П	3
	Limnephilidae	Limnephilinae (3163)	3	7	0,00	0,01		3	1				1	1		1		1	8
	D1:1 :1	Philopotamus (209)	8	8	0,00	0,00	1											П	1
	Philopotamidae	Wormaldia (210)	8	8	0,00	0,00	1												1
	Rhyacophilidae	Rhyacophila (183)	4	-	0,00	0,11	8		1	2			1		1		1	1	15
	Sericostomatidae	Sericostoma (322)	6	10	0,00	0,17		1								2		П	3
	Baetidae	Baetis (364)	2	4	0,00	0,60	1				1				3				5
Ephemeroptera	Heptageniidae	Heptageniidae (399)	5	10	0.00	0,04		\vdash						1				П	1
Hemiptera	Gerridae	Gerris (735)			0,00	0,60							1	-				П	1
Tremiptera	Dryopidae	Dryops (613)	-	5	0,00	0,00		1	1				-		1		\vdash	1	4
	Бтуоргаас	Colymbetinae (2395)	-	5	0,00	0,15		1	1					<u> </u>	_	\vdash	\vdash	H	1
	Dytiscidae	Dytiscinae (2396)	-	5	0,00	0,00	2	\vdash	2					\vdash				\vdash	4
		Dupophilus (620)	2	5	0,00	0,00	-		-	1	1						2	\vdash	4
		11	2		L'	0,00	2	<u> </u>	2	1	2			,	7		5	,	22
Colooptora	Elmidae	Elmis (618) Esolus (619)	2	5	0,00	0,00		<u> </u>	3	1		2		1	1		1	1	3
Coleoptera	Elimidae	` ′	2		L'	_	2	7.0	2	8	20	_	20	0	16	00	 	7.0	-
		Limnius (623)		5	0,00	0,00		12	 	-	32	22	20	9	16	22	45	12	202
	C · · · 1	Oulimnius (622)	2	5	0,00	0,00	6	2	9	13	15	19	3	9	48	4	40	17	185
	Gyrinidae	Orectochilus (515)	•	5	0,00	0,00	_	1	-			_	_	1		_	<u> </u>	$\vdash\vdash$	2
	Scirtidae	Helodes (636)	-	5	0,00	0,00	1	_	1	1	1	1	1		_	_	_	$\vdash\vdash$	6
	Hydraenidae	Hydraena (608)	-	-	0,00	0,25	3	<u> </u>	10	13	1	1		<u> </u>	5	2	2	Н	37
	Ceratopogonidae	Ceratopogonidae (819)	-	-	0,00	0,45		1	_	1			1	_			<u> </u>	\vdash	3
Diptera	Chironomidae	Chironomidae (807)	1	2	0,10	0,51	168	30	40	20	6	1	48	5		8	10	8	344
•	Limoniidae	Limoniidae (757)	-	-	0,00	0,25			<u> </u>	8	13	11		5	9	11	12	2	71
	Simuliidae	Simuliidae (801)	-	5	0,00	0,60	216	_	5	10	1			<u> </u>	2		3	Ш	237
	Calopterygidae	Calopteryx (650)	-	•	0,00	0,00	2		1				1	_		_	<u> </u>	\sqcup	4
Odonata	Cordulegasteridae	Cordulegaster (687)	-	-	0,00	0,00		4	<u> </u>					<u> </u>				Ш	4
	Platycnemididae	Platycnemis (657)	-	-	0,00	0,00		_	1								_	\sqcup	1
Amphipoda	Gammaridae	Gammaridae (887)	2	6	1,00	0,87		3	1			1				1		1	7
	o ummurau o	Gammarus (892)	2	6	1,00	1,00		3								2	1	Ш	6
Isopoda	Asellidae	Asellidae (880)	1	3	1,00	0,71	1									<u> </u>	<u> </u>	Ш	1
Bivalvia	Sphaeriidae	Sphaeriidae (1042)	2	3	1,00	0,50		<u> </u>	<u> </u>					1			<u> </u>		1
	Phaerman	Sphaerium (1044)	2	3	1,00	0,50		<u> </u>	<u> </u>					<u> </u>		2	<u> </u>	Ш	2
Gastropoda	Hydrobiidae	Potamopyrgus (978)	2	3	1,00	0,75	5	70	20	48		21	6	15	15	31	50	7	288
Rhynchobdelliformes	Glossiphoniidae	Glossiphoniidae (908)	1	3	0,61	0,08		7					2					1	10
Oligochaeta		Oligochaeta (933)	1	1	0,00	0,73		1		2	1		2		1			1	8
Hydracarina		Hydracarina (906)	-	-	0,20	0,75	1						2				2		5
								15	98			67	76			89	94		3168

CRA_AV - 2022

CRA_AV - 2022			GN	Ъ	42	I2M2		PHA	SE <u>A</u>			PHA	SE B	<u> </u>		PHA	SE (2	
Ordre/Classe	Famille	Taxon (code)	GFI_IBGN	BMWP	OS_IZM2	PS_I21	Pl	P2	Р3	P4	P5	Р6	P7	Р8	Р9	P10	P11	P12	Σ
Plecoptera	Leuctridae	Leuctra (69)	7	10	0,00	0,00	84	4	88	112	184	16	7	27	109	34	117	25	807
•	Brachycentridae	Brachycentrus (265)	8	10	0,00	0,00					1								1
	Glossosomatidae	Glossosoma (190)	7	-	0,00	0,33										1		1	2
	Hydropsychidae	Hydropsyche (212)	3	5	0,00	0,50	1			9	8			3	7		10		38
	Lepidostomatidae	Lepidostoma (305)	6	10	0,00	0,25						1			1				2
m : 1 .	Leptoceridae	Mystacides (312)	4	10	0,00	0,00							1						1
Trichoptera	Limnephilidae	Limnephilidae (276)	3	7	0,00	0,00		5	14						1	1		1	22
	Philopotamidae	Wormaldia (210)	8	8	0,00	0,00					2						1		3
	Polycentropodidae	Polycentropus (231)	4	7	0,00	0,33								1					1
	Rhyacophilidae	Rhyacophila (183)	4	-	0,00	0,11				1	4			1	1				7
	Sericostomatidae	Sericostoma (322)	6	10	0,00	0,17			2		2								4
Hemiptera	Gerridae	Gerris (735)	-	-	0,00	0,60								1					1
	Dryopidae	Dryops (613)	-	5	0,00	0,00	1												1
		Dupophilus (620)	2	5	0,00	0,00				3									3
	T1 . 1	Elmis (618)	2	5	0,00	0,00	2			2	2				2		11	2	21
	Elmidae	Limnius (623)	2	5	0,00	0,00	3	5		3	12	4		5	5	14	14	8	73
Coleoptera		Oulimnius (622)	2	5	0,00	0,00	1			7	2	2		3	24	3	15		57
•	Gyrinidae	Aulonogyrus (513)	-	5	0,00	0,00		1											1
	Scirtidae	Helodes (636)	-	5	0,00	0,00	2				1								3
	TT 1 .1	Hydraena (608)	-	-	0,00	0,25	3			3	4			1	9		10		30
	Hydraenidae	Ochthebius (609)	-	-	0,00	0,25					1								1
	Athericidae	Athericidae (838)	-	-	0,00	0,00								1					1
	Ceratopogonidae	Ceratopogonidae (819)	-	-	0,00	0,45						1			1				2
Diptera	Chironomidae	Chironomidae (807)	1	2	0,10	0,51	10	27			37	4	2	42	4	84	2	2	214
_	Limoniidae	Limoniidae (757)	-	-	0,00	0,25	3			3	8	5	2		3	6	8		38
	Simuliidae	Simuliidae (801)	-	5	0,00	0,60	5										10		15
	Calopterygidae	Calopteryx (650)	-	-	0,00	0,00										1			1
Odonata	Cordulegasteridae	Cordulegaster (687)	-	-	0,00	0,00					1					1		1	3
	Libellulidae	Orthetrum (698)	-	8	0,00	0,00			1										1
Megaloptera	Sialidae	Sialis (704)	-	-	0,00	0,00		1											1
Amphipoda	Gammaridae	Gammarus (892)	2	6	1,00	1,00		3											3
Bivalvia	Sphaeriidae	Pisidium (1043)	2	3	1,00	0,50							2						2
Gastropoda	Hydrobiidae	Potamopyrgus (978)	2	3	1,00	0,75	67	4	138	213	688	8	82	4	11		107	31	1353
Rhynchobdelliformes	Glossiphoniidae	Glossiphoniidae (908)	1	3	0,61	0,08		5										1	6
Oligochaeta	-	Oligochaeta (933)	1	1	0,00	0,73	2				2		1	3	1	1			10
								8	38			11	89			7	02		2729

CRA_AV - 2023

<u>CRA_AV - 2025</u>			NO:	T	M2	M2	PHASE A]	РНА	SE B			РНА	SE C		
Ordre/Classe	Famille	Taxon (code)	GFI_IBGN	BMWP	OS_I2M2	PS_I2M2	P1	P2	Р3	P4	P5	P6	P7	P8	P9	P10	P11	P12	Σ
		Euleuctra (67)	7	10	0,00	0,00		2		1		1		12	6	4	1		27
DI	Leuctridae	Leuctra (69)	7	10	0,00	0,00	28	44	7	1	97	10		18	17	50	65	186	523
Plecoptera		Leuctridae (66)	7	10	0,00	0,00				1									1
	Nemouridae	Nemoura (26)	6	7	0,00	0,00	1							4	1				6
	Brachycentridae	Brachycentrus (265)	8	10	0,00	0,00			9	5	1			1		1			17
	Glossosomatidae	Agapetus (191)	7	-	0,00	0,25					6								6
	Giossosomatidae	Glossosoma (190)	7	-	0,00	0,33				14									14
	Hydropsychidae	Hydropsyche (212)	3	5	0,00	0,50	2			1	6	1					4		14
	II1	Hydroptilidae (193)	5	6	0,00	0,60				6									6
	Hydroptilidae	Agraylea (201)	5	6	0,00	0,75					1								1
T : 1	Lepidostomatidae	Lepidostoma (305)	6	10	0,00	0,25			2	2		2			1			1	8
Trichoptera	т	Leptoceridae (310)	4	10	0,00	0,06												2	2
	Leptoceridae	Adicella (320)	4	10	0,00	0,00	1						2	1	1				5
	Limnephilidae	Limnephilinae (3163)	3	7	0,00	0,01		15	2								2	1	20
	Polycentropodidae	Polycentropus (231)	4	7	0,00	0,33									1				1
	Rhyacophilidae	Rhyacophila (183)	4	-	0,00	0,11	2												2
		Notidobia (325)	6	10	0,00	0,67		5											5
	Sericostomatidae	Sericostoma (322)	6	10	0,00	0,17			1				2						3
	Dryopidae	Dryops (613)	-	5	0,00	0,00	7							2					9
		Elmis (618)	2	5	0,00	0,00				1	6	1			2	3	3	3	19
	T21 · 1	Esolus (619)	2	5	0,00	0,00	5		1			28		70	27	13		10	154
Coleoptera	Elmidae	Limnius (623)	2	5	0,00	0,00	5			9	11	132	9	8	11	8	11	73	277
•		Oulimnius (622)	2	5	0,00	0,00					10	3				1			14
	Scirtidae	Helodes (636)	-	5	0,00	0,00	4												4
	Hydraenidae	Hydraena (608)	-	-	0,00	0,25	1				2								3
	Ceratopogonidae	Ceratopogonidae (819)	-	-	0,00	0,45	1				17	1			3	2	6	1	31
	Chironomidae	Chironomidae (807)	1	2	0,10	0,51	113	82	84	8	30	14	22	49	24	107	7		540
ъ.	Empididae	Empididae (831)	-	-	0,00	0,35								1					1
Diptera	Limoniidae	Limoniidae (757)	-	-	0,00	0,25					3				3	9	3		18
	Simuliidae	Simuliidae (801)	-	5	0,00	0,60					2	1						1	4
	Tipulidae	Tipulidae (753)	-	5	0,00	0,20	1												1
0.1	Aeshnidae	Boyeria (670)	-	8	0,00	0,00										1			1
Odonata	Cordulegasteridae	Cordulegaster (687)	-	-	0,00	0,00							1	1	1				3
Planipennia	Osmylidae	Osmylus (854)	-	-	0,00	0,25					1								1
Amphipoda	Gammaridae	Echinogammarus (888)	2	6	1,00	1,00			5										5
Isopoda	Asellidae	Asellidae (880)	1	3	1,00	0,71			1										1
Gastropoda	Hydrobiidae	Potamopyrgus (978)	2	3	1,00	0,75	200	169	24	65	26	26	50	122	6	11	192	44	935
Rhynchobdelliformes	Glossiphoniidae	Glossiphoniidae (908)	1	3	0,61	0,08		8	3					1	1	2		4	19
Oligochaeta		Oligochaeta (933)	1	1	0,00	0,73					1		2	3	8				14
Hydracarina	1-	Hydracarina (906)	-	-	0,20	0,75	2												2
· ·		1	•			•		95	51			82	21			9.	15		2717

CRA_RES_AM - 2013	<u> </u>		Z		2	5	PHASE A	PHASE B	PHASE C	
Ordre/Classe	Famille	Taxon (code)	GFI_IBGN	BMWP	OS_I2M2	PS_I2M2	P1 P2 P3 P4	P5 P6 P7 P8	P9 P10 P11 P12	Σ
	Leuctridae	Euleuctra (67)	7	10	0,00	0,00	8	59	2	69
Plecoptera	Leuctridae	Leuctra (69)	7	10	0,00	0,00	102	173	71	346
	Nemouridae	Nemoura (26)	6	7	0,00	0,00	8	2	1	11
	Brachycentridae	Brachycentrus (265)	8	10	0,00	0,00			1	1
	Hydropsychidae	Hydropsyche (212)	3	5	0,00	0,50	3		4	7
T	Lepidostomatidae	Lepidostoma (305)	6	10	0,00	0,25	3	2		5
Trichoptera	Limnephilidae	Limnephilinae (3163)	3	7	0,00	0,01	9	11	1	21
	C ::1	Sericostomatidae (321)	6	10	0,00	0,35	1			1
	Sericostomatidae	Sericostoma (322)	6	10	0,00	0,17	1	1	1	3
E.I.	Ephemeridae	Ephemera (502)	6	-	0,00	0,00			1	1
Ephemeroptera	Leptophlebiidae	Leptophlebiidae (473)	7	10	0,00	0,03		1		1
		Dupophilus (620)	2	5	0,00	0,00	9	1	4	14
	F1	Elmis (618)	2	5	0,00	0,00	9		1	10
Coleoptera	Elmidae	Limnius (623)	2	5	0,00	0,00	27	31	154	212
•		Oulimnius (622)	2	5	0,00	0,00	3	2	1	6
	Hydraenidae	Hydraena (608)	-	-	0,00	0,25	6	2	6	14
	Ceratopogonidae	Ceratopogonidae (819)	-	-	0,00	0,45	1		1	2
	Chironomidae	Chironomidae (807)	1	2	0,10	0,51	154	70	59	283
D: .	Empididae	Empididae (831)	-	-	0,00	0,35			1	1
Diptera	Limoniidae	Limoniidae (757)	-	-	0,00	0,25	14	37	64	115
	Simuliidae	Simuliidae (801)	-	5	0,00	0,60	50	2	13	65
	Tabanidae	Tabanidae (837)	-	-	0,00	0,00		1		1
0.1	Calopterygidae	Calopteryx (650)	-	-	0,00	0,00		1		1
Odonata	Cordulegasteridae	Cordulegaster (687)	-	-	0,00	0,00	2	4		6
A 1: 1	6 :1	Gammaridae (887)	2	6	1,00	0,87	1			1
Amphipoda	Gammaridae	Gammarus (892)	2	6	1,00	1,00	3	18	2	23
Isopoda	Asellidae	Asellidae (880)	1	3	1,00	0,71	2			2
D: 1 :		Sphaerium (1044)	2	3	1,00	0,50	3			3
Bivalvia	Sphaeriidae	Pisidium (1043)	2	3	1,00	0,50		28	28	56
	Ancylidae	Ancylus (1028)	2	-	0,00	0,00	9			9
C . 1	Hydrobiidae	Potamopyrgus (978)	2	3	1,00	0,75	956	755	297	2008
Gastropoda	Lymnaeidae	Radix (1004)	2	3	0,00	0,00	1			1
	Physidae	Physa_stricto-sensu (30103)	2	3	0,00	0,00	1			1
Rhynchobdelliformes	Glossiphoniidae	Glossiphoniidae (908)	1	3	0,61	0,08	2	5		7
Oligochaeta	-	Oligochaeta (933)	1	1	0,00	0,73	15	18	39	72
	•	•	•				1403	1224	752	3379

			GN	Ъ	M2	M2		PHA	SE A	<u>.</u>		PHA	SE E	1		PHA	SE C		
Ordre/Classe	Famille	Taxon (code)	GFI_IBGN	BMWP	OS_I2M2	PS_I2M2	P1	P2	Р3	P4	P5	P6	P7	Р8	P9	P10	P11	P12	Σ
Plecoptera	Leuctridae	Leuctra (69)	7	10	0,00	0,00	52	24	62	6	320	17	2	5	184	22	1	16	711
Песорита	Nemouridae	Nemoura (26)	6	7	0,00	0,00	1	44	48	1		6			32				132
	Goeridae	Silo (292)	7	10	0,00	0,00			1				1						2
	Hydropsychidae	Hydropsyche (212)	3	5	0,00	0,50							1	2					3
	Limnephilidae	Limnephilinae (3163)	3	7	0,00	0,01	1												1
Trichoptera	Psychomyiidae	Psychomyiidae (238)	4	8	0,00	0,80	1							1				1	3
	Rhyacophilidae	Rhyacophila (183)	4		0,00	0,11				1				1					2
	Sericostomatidae	Sericostomatidae (321)	6	10	0,00	0,35			1										1
	Sericostomatidae	Sericostoma (322)	6	10	0,00	0,17										1			1
Hemiptera	Veliidae	Veliidae (743)	-		0,00	0,42				1									1
		Dupophilus (620)	2	5	0,00	0,00			2		4		3	1	1		1		12
	Elmidae	Elmis (618)	2	5	0,00	0,00		1	2				1	1				1	6
Coleoptera	Eimidae	Limnius (623)	2	5	0,00	0,00	19	1	6	2	13	2	9	11	17	7		9	96
		Oulimnius (622)	2	5	0,00	0,00			8		18	3	63	5	6	4		9	116
	Hydraenidae	Hydraena (608)	-		0,00	0,25	12	1	2	8	24	15	87	4		6	1	7	167
	Athericidae	Athericidae (838)	-	-	0,00	0,00			1										1
	Ceratopogonidae	Ceratopogonidae (819)	-	-	0,00	0,45											1		1
	Chironomidae	Chironomidae (807)	1	2	0,10	0,51		4	8			10		32	16		3		73
Diptera	Empididae	Empididae (831)	-	-	0,00	0,35									1				1
	Limoniidae	Limoniidae (757)	-	-	0,00	0,25	1				3		8	12	2	4		4	34
	Simuliidae	Simuliidae (801)	-	5	0,00	0,60										1		1	2
	Tabanidae	Tabanidae (837)	-	-	0,00	0,00											1		1
0.1	Calopterygidae	Calopteryx (650)	-	-	0,00	0,00		2								1			3
Odonata	Cordulegasteridae	Cordulegaster (687)	-	-	0,00	0,00		1	6		1	1	1		2		1		13
Amphipoda	Gammaridae	Gammarus (892)	2	6	1,00	1,00	25			1		1	2		9				38
Gastropoda	Hydrobiidae	Potamopyrgus (978)	2	3	1,00	0,75	16	22	4	16	16	47	3	52	11	19	17	8	231
Oligochaeta		Oligochaeta (933)	1	1	0,00	0,73	3	3						3	2		112	10	133
Hydracarina		Hydracarina (906)	-	-	0,20	0,75					1								1
								4	21			8	13			5	52		1786

			CN	P	12	42		PHA	SE <u>A</u>	<u>.</u>		PHA	SE B			PHA	SE C		
Ordre/Classe	Famille	Taxon (code)	GF1_IBGN	BMWP	OS_I2M2	PS_I2M2	Pl	P2	Р3	P4	P5	P6	P7	P8	P9	P10	P11	P12	Σ
DI .	Leuctridae	Leuctra (69)	7	10	0,00	0,00	80	5	112	8	28	47	74	5	192	133	2	128	814
Plecoptera	Nemouridae	Nemoura (26)	6	7	0,00	0,00		25	2	2			1		7			1	38
 	Brachycentridae	Brachycentrus (265)	8	10	0,00	0,00		1											1
	Glossosomatidae	Agapetus (191)	7	-	0,00	0,25										1			1
	Goeridae	Goeridae (286)	7	10	0,00	0,00					4							3	7
	Hydropsychidae	Hydropsyche (212)	3	5	0,00	0,50							6					3	9
Trichoptera	Lepidostomatidae	Lepidostoma (305)	6	10	0,00	0,25		4	1										5
<u>.</u> 	Limnephilidae	Limnephilinae (3163)	3	7	0,00	0,01	1	4	3	2					2	1		1	14
l	D.1. 1/1	Polycentropodidae (223)	4	7	0,00	0,57		1			1								2
	Polycentropodidae	Polycentropus (231)	4	7	0,00	0,33		1											1
	Sericostomatidae	Sericostoma (322)	6	10	0,00	0,17		6			3			2	4	1		2	18
 	Baetidae	Baetis (364)	2	4	0,00	0,60							2						2
Ephemeroptera		Leptophlebiidae (473)	7	10	0,00	0,03	1	П	1				1						3
1 1	Leptophlebiidae	Habrophlebia (491)	7	10	0,00	0,00	1												1
	Gerridae	Gerris (735)	-	-	0,00	0,60		6		2									8
Hemiptera	Hydrometridae	Hydrometra (740)	-	-	0,00	0,25		1											1
 	Veliidae	Veliidae (743)		-	0,00	0,42		1				\vdash						Н	1
		Dupophilus (620)	2	5	0,00	0,00			1		1	1	1	2		1		2	9
		Elmis (618)	2	5	0,00	0,00		1	2			-	2	-		1		-	6
	Elmidae	Limnius (623)	2	5	0,00	0,00	23	-	6		27	73	26	19	5	21	\vdash	29	229
Coleoptera		Oulimnius (622)	2	5	0,00	0,00	3	12	2	2	4	-	2	-	1	8		9	43
	Gyrinidae	Orectochilus (515)	Ē	5	0,00	0,00	Ť		<u> </u>	_		\vdash	1		_	Ů	\vdash	_	1
	Hydraenidae	Hydraena (608)			0,00	0,25	7	5			4	2	10	1	6	15		24	74
	Hydrophilidae	Hydrophilidae (571)	-	5	0,00	0,25		Ů		1	_	Ē	10	_		10			1
	Ceratopogonidae	Ceratopogonidae (819)			0,00	0,45		\vdash		1		\vdash		_		1	1		2
	Chironomidae	Chironomidae (807)	1	2	0,10	0,51	1	34	5	29	50	5	3	5	70	1	14	1	217
	Limoniidae	Limoniidae (757)	1	-	0,00	0,25	9	34	1	29	70	34	19	14	4	31	14	16	198
Diptera	Psychodidae	Psychodidae (783)		-	0,20	0,75	9	\vdash	1		10	34	19	14	4	31	1	10	1
	Simuliidae	Simuliidae (801)	-	5	0,00	0,60		<u> </u>	\vdash	-	1		6			2	1	4	13
	Tabanidae	Tabanidae (837)	-	э	0,00	0,00		<u> </u>		_	1	1	0			2		4	13
	Aeshnidae	Boyeria (670)	-	8	0,00	0,00		<u> </u>	1	_		1		-		_			1
Odonata		J ,	-		-			16	1	,		-					_		18
donata	Calopterygidae	Calopteryx (650)	-		0,00	0,00		10	2	1					1		-		
	Cordulegasteridae	Cordulegaster (687)		-	0,00	0,00		<u> </u>	_	4		1		_	-		1	2	9
Amphipoda	Gammaridae	Gammaridae (887)	2	6	1,00	0,87	3	_	6	3		4	_		33	4	1	2	56
T 1	A 11: 1	Gammarus (892)	2	6	1,00	1,00	6	3	6	3		-	4	_	34	6	1		63
Isopoda	Asellidae	Asellidae (880)	1	3	1,00	0,71	1	1				_	1						3
Bivalvia	Sphaeriidae	Sphaeriidae (1042)	2	3	1,00	0,50		<u> </u>	<u> </u>	_		1	_	_			<u> </u>	\vdash	1
Gastropoda	Ancylidae	Ancylus (1028)	2	-	0,00	0,00	<u> </u>	_						_		1			1
-	Hydrobiidae	Potamopyrgus (978)	2	3	1,00	0,75	71	70	10	64	6	38	6	31	17	9	78	26	426
Rhynchobdelliformes	Glossiphoniidae	Glossiphoniidae (908)	1	3	0,61	0,08		<u> </u>	<u> </u>		1	<u> </u>			2		<u> </u>	Ш	3
Tricladida	Planariidae	Planariidae (1061)	-	5	0,00	0,00		<u> </u>	<u> </u>	<u> </u>			1				<u> </u>		1
Oligochaeta	4.	Oligochaeta (933)	1	1	0,00	0,73		<u> </u>	3			5	3			1	2	1	15
Hydracarina		Hydracarina (906)	-	-	0,20	0,75		1	l	1	1	į	1				Ì	1	3

<u>CRA_RES_AM - 202</u>	=		GN	Ь	12	12		PHA	SE A			PHA	SE B			РНА	SE C		
Ordre/Classe	Famille	Taxon (code)	GFI_IBGN	BMWP	OS_IZM2	PS_I2M2	P1	P2	Р3	P4	P5	P6	P7	P8	P9	P10	P11	P12	Σ
Plecoptera	Leuctridae	Leuctra (69)	7	10	0,00	0,00	88	6		21	9	2	27	12	64	7	9	117	362
	Brachycentridae	Brachycentrus (265)	8	10	0,00	0,00	1												1
	Glossosomatidae	Glossosoma (190)	7	-	0,00	0,33			2										2
Toisleantana	Hydropsychidae	Hydropsyche (212)	3	5	0,00	0,50				1	2		2						5
Trichoptera	Lepidostomatidae	Lepidostoma (305)	6	10	0,00	0,25	1												1
	Limnephilidae	Limnephilinae (3163)	3	7	0,00	0,01	2	4	5						1	5		1	18
	Sericostomatidae	Sericostoma (322)	6	10	0,00	0,17	2		2	1				1		4	1		11
Ephemeroptera	Ephemeridae	Ephemera (502)	6	-	0,00	0,00				1									1
•	Curculionidae	Curculionidae (647)	-	5	0,00	0,25		1											1
	Dytiscidae	Colymbetinae (2395)	-	5	0,00	0,15		1											1
		Dupophilus (620)	2	5	0,00	0,00			2					1	2			3	8
		Elmis (618)	2	5	0,00	0,00				1	1		2				2		6
	Elmidae	Limnius (623)	2	5	0,00	0,00	3				7	1	4	4	7		1	12	39
		Oulimnius (622)	2	5	0,00	0,00				1	5		4		1			9	20
Coleoptera	Gyrinidae	Orectochilus (515)	-	5	0,00	0,00					1								1
	Haliplidae	Haliplus (518)	-	5	0,00	0,75		1											1
	Scirtidae	Helodes (636)	-	5	0,00	0,00		1											1
	Helophoridae	Helophorus (604)	-	-	0,00	0,25		1											1
	Hydraenidae	Hydraena (608)	-	-	0,00	0,25	4	20		2	12		15					3	56
	Hydrophilidae	Hydrophilidae (571)	-	5	0,00	0,25		2											2
	Athericidae	Athericidae (838)	-	-	0,00	0,00		1								1			2
	Ceratopogonidae	Ceratopogonidae (819)	-	-	0,00	0,45										1			1
	Chironomidae	Chironomidae (807)	1	2	0.10	0,51	10				2	23	1	2	18	15	8	10	89
Diptera	Limoniidae	Limoniidae (757)	-	-	0,00	0,25			1		8		10	5	2			2	28
	Simuliidae	Simuliidae (801)	-	5	0,00	0,60							3						3
	Tabanidae	Tabanidae (837)	-	-	0,00	0,00	1					1							2
	Calopterygidae	Calopteryx (650)	-	-	0,00	0,00		3											3
Odonata	Cordulegasteridae	Cordulegaster (687)	-	-	0,00	0,00	1		1							1			3
Lepidoptera	Crambidae	Crambidae (2947)	-	-	0,00	0,43										1			1
		Gammaridae (887)	2	6	1,00	0,87	7	13											20
Amphipoda	Gammaridae	Gammarus (892)	2	6	1,00	1,00	70	42	1	1	3			1	6	1		4	129
Bivalvia	Sphaeriidae	Pisidium (1043)	2	3	1,00	0,50											1		1
Gastropoda	Hydrobiidae	Potamopyrgus (978)	2	3	1,00	0,75	34	160	4	160	213	5	70	44	6	58	42		796
Rhynchobdelliformes	Glossiphoniidae	Glossiphoniidae (908)	1	3	0,61	0,08	3		2									1	6
Oligochaeta	-	Oligochaeta (933)	1	1	0,00	0,73	1						1	1		1	2	1	7
	1							69	93			50	05			4:	31		1629

			c_N	Р	42	IZMZ		РНА	SE A	<u>.</u>		PHA	SE B	<u> </u>		PHA	SE C	:	
Ordre/Classe	Famille	Taxon (code)	GFI_IBGN	BMWP	OS_IZM2	PS_IZI	P1	P2	Р3	P4	P5	P6	P7	P8	P9	P10	P11	P12	Σ
	Leuctridae	Euleuctra (67)	7	10	0,00	0,00	6	6		4	3								19
Plecoptera	Leuctifuae	Leuctra (69)	7	10	0,00	0,00	92	8		27	98	42	21	2	1	18	9	11	329
	Nemouridae	Nemoura (26)	6	7	0,00	0,00	3	2		3	10		1					8	27
	Brachycentridae	Brachycentrus (265)	8	10	0,00	0,00				8	1								9
	Glossosomatidae	Agapetus (191)	7	-	0,00	0,25					1	1							2
	Goeridae	Goera (287)	7	10	0,00	0,00				1		1		1					3
	Hydropsychidae	Hydropsyche (212)	3	5	0,00	0,50				8			1						9
	Hydroptilidae	Hydroptilidae (193)	5	6	0,00	0,60												1	1
	Lepidostomatidae	Lepidostoma (305)	6	10	0,00	0,25	1	2		11	9								23
Trichoptera	Leptoceridae	Adicella (320)	4	10	0,00	0,00											2	1	3
	D.1 1:1	Plectrocnemia (228)	4	7	0,00	0,40	2			1									3
	Polycentropodidae	Polycentropus (231)	4	7	0,00	0,33	2			1									3
	Psychomyiidae	Lype (241)	4	8	0,00	1,00	6			8	5								19
	, ,	Sericostomatidae (321)	6	10	0,00	0,35	1												1
	Sericostomatidae	Notidobia (325)	6	10	0,00	0,67			1				\vdash				\vdash		1
		Sericostoma (322)	6	10	0,00	0,17		\vdash			1								1
Ephemeroptera	Leptophlebiidae	Leptophlebiidae (473)	7	10	0,00	0,03				_	3					<u> </u>			3
Hemiptera	Gerridae	Gerris (735)			0,00	0,60			6										6
Hemiptera	Octificae	Elmis (618)	2	5	0,00	0,00			0			2	\vdash			2	1		5
		Esolus (619)	2	5	0,00	0,00	2	1				1				-	1		4
	Elmidae	Limnius (623)	2	5	0,00	0,00	-	1	1	15	5	19	2	13		9	<u> </u>	1	65
Calamatan		' '	2	-	L'	L.			1	15	Э	_	2	13	,	9	_		21
Coleoptera		Oulimnius (622)		5	0,00	0,00		<u> </u>	_			15	<u> </u>	<u> </u>	1	<u> </u>	<u> </u>	5	
		Limnebius (599)	-	-	0,00	0,25	_	<u> </u>	_	1	_		<u> </u>	_		_	<u> </u>		1
	Hydraenidae	Hydraena (608)	-	-	0,00	0,25	5	_	1	3	2	4		1		1			17
		Hydraenidae (607)	-	-	0,00	0,25	2	<u> </u>	_	2	1		2	<u> </u>		<u> </u>	<u> </u>	1	8
	Athericidae	Athericidae (838)	-	-	0,00	0,00	1			1					1			igsqcup	3
	Ceratopogonidae	Ceratopogonidae (819)	-	-	0,00	0,45		<u> </u>				1	<u> </u>	<u> </u>		<u> </u>	<u> </u>		1
	Chironomidae	Chironomidae (807)	1	2	0,10	0,51	13	6	9		16	2	5	3	29	4	21	21	129
Diptera	Dixidae	Dixidae (793)	-	-	0,00	0,00			1				<u> </u>				<u> </u>		1
D IP COTA	Empididae	Empididae (831)	-	-	0,00	0,35		<u> </u>			1		L	<u> </u>		<u> </u>	L		1
	Limoniidae	Limoniidae (757)	-	-	0,00	0,25				2	1	15		13	1	21		1	54
	Simuliidae	Simuliidae (801)	-	5	0,00	0,60				11									11
	Tabanidae	Tabanidae (837)	-	-	0,00	0,00									3				3
Odonata	Calopterygidae	Calopteryx (650)	-	-	0,00	0,00					1								1
Odonata	Cordulegasteridae	Cordulegaster (687)	-	-	0,00	0,00			1		1				1	1		1	5
Megaloptera	Sialidae	Sialis (704)	-	-	0,00	0,00		L^-	1				L^-				1		2
A lain a da	C 1	Gammarus (892)	2	6	1,00	1,00	40		4	16	119		7	3				8	197
Amphipoda	Gammaridae	Echinogammarus (888)	2	6	1,00	1,00						12				7	2		21
Isopoda	Asellidae	Asellidae (880)	1	3	1,00	0,71					2	2							4
Gastropoda	Hydrobiidae	Potamopyrgus (978)	2	3	1,00	0,75	4		5	1	4	2		4	8	2	3	19	52
Rhynchobdelliformes	-	Glossiphoniidae (908)	1	3	0,61	0,08		Г			2		Г				Г		2
Oligochaeta	-	Oligochaeta (933)	1	1	0,00	0,73		1				1	1	2	1				6
	1								60				88			2	28		1076

CRA_RES_AV - 2013	_		GN	Ь	42	42	PHASE <u>A</u>	PHASE B	PHASE <u>C</u>	
Ordre/Classe	Famille	Taxon (code)	GFI_IBGN	BMWP	OS_IZM2	PS_I2M2	P1 P2 P3 P4	P5 P6 P7 P8	P9 P10 P11 P12	Σ
Ì	Leuctridae	Euleuctra (67)	7	10	0,00	0,00	6			6
Plecoptera		Leuctra (69)	7	10	0,00	0,00	92	69	85	246
Песорита	Nemouridae	Protonemura (46)	6	7	0,00	0,00		4	4	8
_	Perlodidae	Isoperla (140)	9	10	0,00	0,00		2	1	3
Ì	Brachycentridae	Brachycentrus (265)	8	10	0,00	0,00		1		1
Ì	Hydropsychidae	Hydropsyche (212)	3	5	0,00	0,50		3	6	9
İ	Lepidostomatidae	Lepidostoma (305)	6	10	0,00	0,25	1	3	1	5
Trichoptera	Limnephilidae	Limnephilinae (3163)	3	7	0,00	0,01	12	7	5	24
Ì	Rhyacophilidae	Rhyacophila (183)	4	-	0,00	0,11		6		6
İ	Sericostomatidae	Notidobia (325)	6	10	0,00	0,67			1	1
<u> </u>	Sericostomatidae	Sericostoma (322)	6	10	0,00	0,17	7	1	2	10
1	Baetidae	Baetis (364)	2	4	0,00	0,60		19	6	25
Ephemeroptera	Ephemerellidae	Ephemerella (450)	3	10	0,00	0,25		3		3
i	Heptageniidae	Ecdyonurus (421)	5	10	0,00	0,00		1		1
TT	Gerridae	Gerris (735)	-		0,00	0,60		1		1
Hemiptera	Veliidae	Veliidae (743)	-	-	0,00	0,42	2			2
	Dryopidae	Dryops (613)	-	5	0,00	0,00	1			1
İ	Dytiscidae	Hydroporinae (2393)	-	5	0,00	0,75	2			2
İ		Dupophilus (620)	2	5	0,00	0,00		20	29	49
la .		Elmis (618)	2	5	0,00	0,00	1	2	1	4
Coleoptera	Elmidae	Limnius (623)	2	5	0,00	0,00	22	101	42	165
İ		Oulimnius (622)	2	5	0,00	0,00	1	3	6	10
Ì	Gyrinidae	Gyrinus (514)	-	5	0,00	0,00	1			1
İ	Hydraenidae	Hydraena (608)	-	-	0,00	0,25	1	10	18	29
	Ceratopogonidae	Ceratopogonidae (819)	-	-	0,00	0,45	1	1		2
İ	Chironomidae	Chironomidae (807)	1	2	0,10	0,51	238	57	75	370
Diptera	Limoniidae	Limoniidae (757)	-	-	0,00	0,25	1	19	13	33
1	Simuliidae	Simuliidae (801)	_	5	0,00	0,60	52	431	232	715
Ì	Tabanidae	Tabanidae (837)	_		0,00	0,00	5			5
	Calopterygidae	Calopteryx (650)			0,00	0,00	1			1
Odonata	Coenagrionidae	Coenagrionidae (658)	_	6	0,00	0,20	1		1	1
	-	Cordulegaster (687)	_		0,00	0,00	1	1	1	3
Megaloptera	Sialidae	Sialis (704)	-		0,00	0,00	1		1	1
Amphipoda	Gammaridae	Gammarus (892)	2	6	1,00	1,00	9	53	19	81
Isopoda	Asellidae	Asellidae (880)	1	3	1,00	0,71	-		1	1
Bivalvia	Sphaeriidae	Pisidium (1043)	2	3	1,00	0,50	7	5	8	20
221, 411, 114	Ancylidae	Ancylus (1028)	2	-	0,00	0,00	1	6	5	12
Gastropoda	Hydrobiidae	Potamopyrgus (978)	2	3	1,00	0,75	971	795	742	2508
Rhynchobdelliformes	Glossiphoniidae	Glossiphoniidae (908)	1	3	0,61	0,73	2	1	1	4
Oligochaeta	Olossiphomiuae	Oligochaeta (933)	1	1	0,00	0,73	7	5	4	16
Ongochaeta	1-			1	<u> </u>	_		,		
Hydracarina		Hydracarina (906)			0.20	0,75	1		1	2

CRA_RES_AV - 202	-		GN	Ъ	42	I2M2		РНА	SE A			РНА	SE B			PHA	SE C		
Ordre/Classe	Famille	Taxon (code)	GFI_IBGN	BMWP	OS_IZM2	PS_E	P1	P2	Р3	P4	P5	P6	P7	P8	Р9	P10	P11	P12	Σ
	Leuctridae	Leuctra (69)	7	10	0,00	0,00	4	320		48	22		80	7	5	10	1	18	515
Plecoptera	Nemouridae	Nemoura (26)	6	7	0,00	0,00	7		138		5	1	18	35		7	10	11	232
	Perlodidae	Perlodidae (127)	9	10	0,00	0,00					2								2
	Brachycentridae	Brachycentrus (265)	8	10	0,00	0,00							1						1
	Glossosomatidae	Agapetus (191)	7		0,00	0,25							1			1		3	5
	G	Goeridae (286)	7	10	0,00	0,00												4	4
	Goeridae	Silo (292)	7	10	0,00	0,00												2	2
	Hydropsychidae	Hydropsyche (212)	3	5	0,00	0,50	3	1	2	5	5					2		5	23
Trichoptera	TT 1	Hydroptila (200)	5	6	0,00	0,60					1								1
	Hydroptilidae	Ithytrichia (198)	5	6	0,00	0,00			1										1
	Lepidostomatidae	Lepidostoma (305)	6	10	0,00	0,25	1		5					1			1		8
	Limnephilidae	Limnephilinae (3163)	3	7	0,00	0,01		5	1	1			2	1	1		1		12
	Psychomyiidae	Lype (241)	4	8	0,00	1,00							1						1
	Sericostomatidae	Sericostoma (322)	6	10	0,00	0,17	1			1	1			2			1	1	7
D 1	Baetidae	Baetis (364)	2	4	0,00	0,60			4									1	5
Ephemeroptera	Ephemerellidae	Ephemerella (450)	3	10	0,00	0,25					1								1
	Gerridae	Gerris (735)	-	-	0,00	0,60	3												3
Hemiptera	Veliidae	Veliidae (743)	-	-	0,00	0,42	2												2
		Dupophilus (620)	2	5	0,00	0,00			8	5	8	1	8	7		5		6	48
		Elmis (618)	2	5	0,00	0,00			4	1	5	2	5	4				2	23
	Elmidae	Esolus (619)	2	5	0,00	0,00					3								3
Coleoptera		Limnius (623)	2	5	0,00	0,00	4	5	4	6	7	4	18	9		14	1	7	79
1		Oulimnius (622)	2	5	0,00	0,00	8		13	4	28	6	14	9		16	1	9	108
	Gyrinidae	Orectochilus (515)	-	5	0,00	0,00			1										1
	Hydraenidae	Hydraena (608)	-	-	0,00	0,25	14		49	54	5	2	1	6		2		12	145
	Chironomidae	Chironomidae (807)	1	2	0,10	0,51		11	80			27			6	2	28		154
Diptera	Limoniidae	Limoniidae (757)	-	-	0,00	0,25				4	2	3	3	1		1		4	18
1	Simuliidae	Simuliidae (801)	-	5	0,00	0,60	7		10	2					1	15		4	39
0.1	Calopterygidae	Calopteryx (650)	-	-	0,00	0,00			19					1					20
Odonata	Cordulegasteridae	Cordulegaster (687)	-	-	0,00	0,00		3		2	2	4	1		4		1	1	18
Megaloptera	Sialidae	Sialis (704)	-	-	0,00	0,00											1	П	1
Amphipoda	Gammaridae	Gammarus (892)	2	6	1,00	1,00	1	5	1	5	1		1	4	4	1		7	30
Gastropoda	Hydrobiidae	Potamopyrgus (978)	2	3	1,00	0,75		1	4	213	11	64	80	4	38	42	27	18	502
Oligochaeta	,	Oligochaeta (933)	1	1	0,00	0,73				1	1	2							4
Hydracarina	†	Hydracarina (906)	-	-	0,20	0,75			1	1			1					1	4
· ·	1							11	04			5	52			30	56		2022

			GN	Ъ	И2	M2		РНА	SE <u>A</u>	Ĺ		РНА	SE B	<u> </u>		PHA	SE C	<u>!</u>	
Ordre/Classe	Famille	Taxon (code)	GFI_IBGN	BMWP	os_izmz	PS_I2M2	P1	P2	Р3	P4	P5	P6	P7	Р8	P9	P10	P11	P12	Σ
	Leuctridae	Leuctra (69)	7	10	0,00	0,00	2	43	1	42	25	15	5	10			4	30	177
Plecoptera	N 1	Nemoura (26)	6	7	0,00	0,00	3	20	36		1		4			2		5	71
_	Nemouridae	Protonemura (46)	6	7	0,00	0,00				1									1
	Hydropsychidae	Hydropsyche (212)	3	5	0,00	0,50				10	1			4	2			7	24
	Limnephilidae	Limnephilinae (3163)	3	7	0,00	0,01			1	3			1						5
Trichoptera	Rhyacophilidae	Rhyacophila (183)	4	-	0,00	0,11	1								1			2	4
	C	Notidobia (325)	6	10	0,00	0,67											1		1
	Sericostomatidae	Sericostoma (322)	6	10	0,00	0,17		2		4	2	2		1			3	2	16
	D	Baetidae (363)	2	4	0,09	0,65												5	5
Ephemeroptera	Baetidae	Baetis (364)	2	4	0,00	0,60	3			4	2							2	11
	Ephemerellidae	Ephemerella (450)	3	10	0,00	0,25	1												1
TT	Gerridae	Gerris (735)	-	-	0,00	0,60									4			4	8
Hemiptera	Veliidae	Veliidae (743)	-	-	0,00	0,42									1				1
		Dupophilus (620)	2	5	0,00	0,00				6	3					1		16	26
		Elmis (618)	2	5	0,00	0,00			3	2						1		1	7
Coleoptera	Elmidae	Limnius (623)	2	5	0,00	0,00		14		13	9	5	6	6		13	1	44	111
1		Oulimnius (622)	2	5	0,00	0,00	1	3	19	1	11	3	1	6		2		6	53
	Hydraenidae	Hydraena (608)	-	-	0,00	0,25	2	1	25	4				2		3		19	56
	Ceratopogonidae	Ceratopogonidae (819)	-	-	0,00	0,45									1				1
	Chironomidae	Chironomidae (807)	1	2	0,10	0,51	56	59	5	5	1	4		1	20	10	5	3	169
Diptera	Limoniidae	Limoniidae (757)	-	-	0,00	0,25		1		7	9	4	1	6		2		11	41
1	Simuliidae	Simuliidae (801)	-	5	0,00	0,60	70	1		20	1			10		1		77	180
	Tabanidae	Tabanidae (837)	-	-	0,00	0,00							1		3				4
	Aeshnidae	Boyeria (670)	-	8	0,00	0,00			3										3
Odonata	Calopterygidae	Calopteryx (650)	-	-	0,00	0,00	4		8										12
	Cordulegasteridae	Cordulegaster (687)	-	-	0,00	0,00		1		2	1		1		2				7
		Gammaridae (887)	2	6	1,00	0,87		2				2	1				2	3	10
Amphipoda	Gammaridae	Gammarus (892)	2	6	1,00	1,00	2	12	5	3			4	1			4	5	36
		Sphaeriidae (1042)	2	3	1,00	0,50											1		1
Bivalvia	Sphaeriidae	Sphaerium (1044)	2	3	1,00	0,50								1			6		7
	Ancylidae	Ancylus (1028)	2	-	0,00	0,00			\vdash					Ė		\vdash	<u> </u>	1	1
Gastropoda	Hydrobiidae	Potamopyrgus (978)	2	3	1,00	0,75	6	96	240	17	156	84	203	320	26	6	26	26	1206
Oligochaeta	,	Oligochaeta (933)	1	1	0,00	0,73	1	2	1	3	1	1	1			Ť	10	1	20
Hydracarina	 -	Hydracarina (906)			0,20	0,75		<u> </u>		Ť		-	<u> </u>				-	\vdash	
11 / 41 40 41 1114		/ 40411114 (200)			5,25	,,,,		94	02			0.	10	L		4:	24	Щ.	2276

			GN	Р	42	И2		PHA	SE A	L		PHA	SE E	<u> </u>	11 4 9 11 1 7 11 1 7 11 1 1 1 1 1 1 1 1 1 1 1			:	
Ordre/Classe	Famille	Taxon (code)	GFI_IBGN	BMWP	OS_I2M2	PS_I2M2	P1	P2	Р3	P4	P5	P6	P7	P8	P9	P10	P11	P12	Σ
Plecoptera	Leuctridae	Leuctra (69)	7	10	0,00	0,00	5	10	13	11	4		46	3		11	4	9	116
	Glossosomatidae	Glossosoma (190)	7	-	0,00	0,33				2						1			3
	Goeridae	Goeridae (286)	7	10	0,00	0,00							1			1		1	3
Trichoptera	Hydropsychidae	Hydropsyche (212)	3	5	0,00	0,50				27	11			1		1		7	47
Trichoptera	Lepidostomatidae	Lepidostoma (305)	6	10	0,00	0,25	1												1
	Limnephilidae	Limnephilinae (3163)	3	7	0,00	0,01		3	1	1			1						6
	Sericostomatidae	Sericostoma (322)	6	10	0,00	0,17							1			1			2
E-b	Baetidae	Baetis (364)	2	4	0,00	0,60				3									3
Ephemeroptera	Ephemerellidae	Ephemerella (450)	3	10	0,00	0,25	1			1									2
IIit	Gerridae	Gerris (735)	-	-	0,00	0,60	2		3						1	1	1		8
Hemiptera	Veliidae	Veliidae (743)	-	-	0,00	0,42	5											1	6
	Dytiscidae	Dytiscinae (2396)	-	5	0,00	0,00			1										1
		Dupophilus (620)	2	5	0,00	0,00	2	1		10			4			2		3	22
	F1	Elmis (618)	2	5	0,00	0,00			1	6				2				1	10
Coleoptera	Elmidae	Limnius (623)	2	5	0,00	0,00	4	2	2	22	4	1	7	1		10	2	14	69
-		Oulimnius (622)	2	5	0,00	0,00	9	2		13	2			1				3	30
	Hydraenidae	Hydraena (608)	-	-	0,00	0,25	37		7	34	4		2					16	100
	Hydrophilidae	Hydrophilidae (571)	-	5	0,00	0,25	1		1										2
	Athericidae	Athericidae (838)	-	-	0,00	0,00										1			1
	Ceratopogonidae	Ceratopogonidae (819)	-	-	0,00	0,45								1					1
Diptera	Chironomidae	Chironomidae (807)	1	2	0,10	0,51	2	5	3		3	18	15	4		23	67		140
-	Limoniidae	Limoniidae (757)	-	-	0,00	0,25	2			4	5				1			3	15
	Simuliidae	Simuliidae (801)	-	5	0,00	0,60	2			40	15			3					60
	Calopterygidae	Calopteryx (650)	-	-	0,00	0,00	2		1				1					1	5
Odonata	Cordulegasteridae	Cordulegaster (687)	-	-	0,00	0,00		1		1	2	1	4				1		10
	Gomphidae	Onychogomphus (682)	-	8	0,00	0,00							1						1
		Gammaridae (887)	2	6	1,00	0,87				4									4
Amphipoda	Gammaridae	Gammarus (892)	2	6	1,00	1,00		6	6	11	1								24
Bivalvia	Sphaeriidae	Pisidium (1043)	2	3	1,00	0,50											1		1
Gastropoda	Hydrobiidae	Potamopyrgus (978)	2	3	1,00	0,75	12	67	37	50	32	22	39		168	12	3	11	453
Oligochaeta	·	Oligochaeta (933)	1	1	0,00	0,73				1		1					1	1	4
Hydracarina	-	Hydracarina (906)		-	0,20	0,75	1												1
·	-	<u> </u>	-	-	-	-		50	02			20	64		385				1151

CRA_RES_AV - 2023

		GN	Ъ	42	I2M2		PHA	SE A			PHA	SE B	<u> </u>		РНА	SE C	:		
Ordre/Classe	Famille	Taxon (code)	GFI_IBGN	BMWP	OS_IZM2	PS_I2]	P1	P2	Р3	P4	P5	P6	Р7	Р8	P9	P10	P11	P12	Σ
Plecoptera	Leuctridae	Euleuctra (67)	7	10	0,00	0,00		8							1		1		10
	Leuetiluae	Leuctra (69)	7	10	0,00	0,00	7	34	6	59	33	4	51		3	3	4	131	335
	Nemouridae	Nemoura (26)	6	7	0,00	0,00			41		2				3			2	48
	Brachycentridae	Brachycentrus (265)	8	10	0,00	0,00			1				<u> </u>				<u> </u>	1	2
	Glossosomatidae	Agapetus (191)	7	-	0,00	0,25							1						1
	Goeridae	Goera (287)	7	10	0,00	0,00				2							<u> </u>		2
	Hydropsychidae	Hydropsyche (212)	3	5	0,00	0,50	11		4	9			1					4	29
	Hydroptilidae	Hydroptilidae (193)	5	6	0,00	0,60	1	1	32		1		1					1	37
	T: J++: J	Lepidostomatidae (304)	6	10	0,00	0,11			1										1
Trichoptera	Lepidostomatidae	Lepidostoma (305)	6	10	0,00	0,25		1	1										2
	Leptoceridae	Adicella (320)	4	10	0,00	0,00			7										7
	Limnephilidae	Limnephilinae (3163)	3	7	0,00	0,01	2		1								1		4
	Polycentropodidae	Holocentropus (235)	4	7	0,00	0,60			1										1
	Rhyacophilidae	Rhyacophila (183)	4	-	0,00	0,11	5			1								1	7
		Sericostomatidae (321)	6	10	0,00	0,35											1	П	1
Seri	Sericostomatidae	Sericostoma (322)	6	10	0,00	0,17			2			2	1					2	7
	Baetidae	Baetis (364)	2	4	0,00	0,60	3	2		11	2							Н	18
Ephemeroptera	Ephemerellidae	Ephemerella (450)	3	10	0,00	0,25			1		1		1					\Box	3
Hemiptera	Gerridae	Gerris (735)	-		0,00	0,60						2		1			1	\Box	4
		Elmis (618)	2	5	0,00	0,00			6	12	2	1	18			1		17	57
		Esolus (619)	2	5	0,00	0,00			4		5					\vdash			9
Coleoptera	Elmidae	Limnius (623)	2	5	0,00	0,00		4	2	9	16	3	19	6	1		\vdash	26	86
Goldopteru		Oulimnius (622)	2	5	0,00	0,00	1	-	7	1		1	11	ľ	_	1		8	30
	Hydraenidae	Hydraena (608)	-	-	0,00	0,25	6		27	3	1	1	18	-		1		8	63
	Athericidae	Athericidae (838)			0,00	0,00	-	2	21	1	-	2	10	1	2	\vdash		H	8
	Chironomidae	Chironomidae (807)	1	2	0,10	0,51	9	18	130	2	17	35	5	27	20	22	52	18	355
Diptera	Limoniidae	Limoniidae (757)		-	0,00	0,25	,	10	130	7	1	33	12	2	20	22	32	25	47
Diptera	Simuliidae	Simuliidae (801)	-	5	0,00	0,60	##	1	45	6	1		6	-			\vdash	17	1779
	Tabanidae	Tabanidae (837)		-	0,00	0,00	TTTT	1	40	-		5	0	3		1	\vdash	11	10
	Calopterygidae	Calopteryx (650)	-		0,00	0,00		1	3			,	<u> </u>	3		1	1	$\vdash \vdash$	4
Odonata	Cordulegasteridae	Cordulegaster (687)	-	Ė	0,00	0,00			J	1	1	2	1	-		 	1	1	6
Outilata	Gomphidae	Ŭ , , ,	-	8	-	0,00			1	1	1	2	1					1	1
	Gompiliae	Gomphus (679)	2		0,00	-	10	18	1	15		,	47	<u> </u>			\vdash	26	
Amphipoda	Gammaridae	Gammarus (892)	2	6	1,00	1,00	10	18		15	14	3	47	<u> </u>				36	129
D: 1:	C 11	Echinogammarus (888)		-	-	-					14		<u> </u>	<u> </u>	_	<u> </u>	<u> </u>	$\vdash\vdash$	
Bivalvia	Sphaeriidae	Pisidium (1043)	2	3	1,00	0,50						1	\vdash	<u> </u>	1	<u> </u>	\vdash		2
G . 1	Ancylidae	Ancylus (1028)	2	-	0,00	0,00		1						_	<u> </u>	<u> </u>	_	2	3
Gastropoda	Hydrobiidae	Potamopyrgus (978)	2	3	1,00	0,75	60		13	10		34	4	2	4	4	54	656	841
	Planorbidae	Planorbidae (1009)	2	3	0,00	0,03		_				1	<u> </u>	<u> </u>		_	<u> </u>	$\sqcup \mid$	1
Rhynchobdelliformes	Glossiphoniidae	Glossiphoniidae (908)	1	3	0,61	0,08							<u> </u>	<u> </u>		_	_	1	1
Oligochaeta	<u> </u>	Oligochaeta (933)	1	1	0,00	0,73				3	10	2	2	<u> </u>	3	<u> </u>	_	1	21
Hydracarina		Hydracarina (906)	-	-	0,20	0,75							1				<u> </u>		1
								23	98			44	16			11	43		3987

<u>Annexe 2</u>: Listes floristiques diatomiques des quatre stations du Crazius de 2019 à 2023

Annexe 1 : Listes faunistiques invertébrés aquatiques des quatre stations du Crazius de 2019 à 2023

 $CRA_AM - 2019$

Dénomination taxinomique (nom latin et auteur)	Code OMNIDIA*	Effectif	%
MAYAMAEA Lange-Bertalot	MAYA	172	42,7%
Karayevia oblongella (Østrup) M. Aboal	KOBG*	101	25,1%
Chamaepinnularia evanida (Hustedt) Lange-Bertalot	CHEV*	27	6,7%
Navicula cryptocephala Kützing var. cryptocephala	NCRY*	16	4,0%
Achnanthidium subatomoides (Hustedt) Monnier, Lange-Bertalot et Ector	ADSO*	12	3,0%
Eolimna minima Grunow) Lange-Bertalot	EOMI*	8	2,0%
Eunotia minor (Kützing) Grunow in Van Heurck	EMIN*	6	1,5%
Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot var. lanceolatum	PTLA*	6	1,5%
Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	ADMI*	5	1,2%
Navicula exilis Kützing	NEXI*	5	1,2%
Nitzschia acidoclinata Lange-Bertalot	NACD*	4	1,0%
Achnanthidium kranzii (Lange-Bertalot) Round & Bukhtiyarova	ADKR*	3	0,7%
Eolimna rhombelliptica Moser Lange-Bertalot & Metzeltin	EORH*	3	0,7%
Navicula gregaria Donkin var. gregaria	NGRE*	3	0,7%
Navicula lanceolata (Agardh) Ehrenberg var. lanceolata	NLAN*	3	0,7%
Encyonema silesiacum (Bleisch in Rabh.) D.G. Mann var. silesiacum	ESLE*	2	0,5%
Eunotia botuliformis Wild, Nörpel-Schempp & Lange-Bertalot	EBOT*	2	0,5%
GOMPHONEMA C.G. Ehrenberg	GOMP	2	0,5%
HIPPODONTA Lange-Bertalot. Metzeltin & Witkowski	HIPO	2	0,5%
Meridion circulare var. constrictum (Ralfs) Van Heurck	MCCO*	2	0,5%
Nitzschia gracilis Hantzsch var. gracilis	NIGR*	2	0,5%
Nitzschia palea (Kützing) W.Smith var. palea	NPAL*	2	0,5%
Planothidium frequentissimum (Lange-Bertalot)Lange-Bertalot var. frequentissimum	PLFR*	2	0,5%
Tabellaria flocculosa (Roth) Kützing var. flocculosa	TFLO*	2	0,5%
CHAMAEPINNULARIA Lange-Bertalot & Krammer	CHAM	1	0,2%
Cymbopleura naviculiformis (Auerswald) Krammer	CBNA*	1	0,2%
Eunotia incisa Gregory var. incisa	EINC*	1	0,2%
Eunotia paratridentula Lange-Bertalot & Kulikovskiy in Kulikovskiy	EPTD	1	0,2%
Gomphonema exilissimum (Grun.) Lange-Bertalot & Reichardt	GEXL*	1	0,2%
Karayevia suchlandtii (Hustedt) Bukhtiyarova	KASU*	1	0,2%
Nitzschia parvula W.M.Smith	NPAR	1	0,2%
Nitzschia recta Hantzsch ex Rabenhorst	NREC*	1	0,2%
Stauroforma exiguiformis (Lange-Bertalot) Flower Jones et Round	SEXG*	1	0,2%
Stauroneis thermicola (Boye-Petersen) Lund	STHE*	1	0,2%
Staurosira venter (Ehrenberg) Cleve & Moeller var. venter	SSVE*	1	0,2%

^{*} Taxon contributif au calcul de l'IBD

CRA_AM_20

Dénomination taxinomique (nom latin et auteur)	Code OMNIDIA*	Effectif	%
Karayevia oblongella (Østrup) M, Aboal	KOBG*	199	49,4%
MAYAMAEA Lange-Bertalot	MAYA	75	18,6%
Achnanthidium minutissimum (Kützing) Czarnecki var, minutissimum	ADMI*	13	3,2%
Chamaepinnularia evanida (Hustedt) Lange-Bertalot	CHEV*	12	3,0%
Achnanthidium kranzii (Lange-Bertalot) Round & Bukhtiyarova	ADKR*	10	2,5%
Sellaphora atomoides (Grunow) Wetzel et Van de Vijver	SEAT*	9	2,2%
Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot var, lanceolatum	PTLA*	7	1,7%
Gomphonema exilissimum (Grun,) Lange-Bertalot & Reichardt	GEXL*	5	1,2%
Stauroforma exiguiformis (Lange-Bertalot) Flower Jones et Round	SEXG*	4	1,0%
STAUROSIRA (C,G, Ehrenberg) D,M, Williams & F,E, Round	STRS	4	1,0%
Achnanthidium subatomoides (Hustedt) Monnier, Lange-Bertalot et Ector	ADSO*	3	0,7%
Eolimna rhombelliptica Moser Lange-Bertalot & Metzeltin	EORH*	3	0,7%
Sellaphora nigri (De Not,) C,E, Wetzel et Ector comb, nov, emend,	SNIG*	3	0,7%
Adlafia suchlandtii (Hustedt) Monnier & Ector	ADFS*	2	0,5%
CALONEIS P,T, Cleve	CALO	2	0.5%
Caloneis tenuis (Gregory) Krammer	CATE*	2	0,5%
CHAMAEPINNULARIA Lange-Bertalot & Krammer	CHAM	2	0,5%
Cymbopleura naviculiformis (Auerswald) Krammer	CBNA*	2	0,5%
Eunotia boreoalpina Lange-Bertalot & Nörpel-Schempp	EBOA	2	0,5%
Eunotia tenella (Grunow in Van Heurck) Hustedt in Schmidt & al var, tenella	ETEN*	2	0,5%
Fistulifera saprophila (Lange-Bertalot & Bonik) Lange-Bertalot	FSAP*	2	0,5%
FRAGILARIA H,C, Lyngbye	FRAG	2	0,5%
Humidophila contenta (Grunow) Lowe, Kociolek, Johansen, Van de Vijver, Lange-Bertalot et	HUCO*	2	0,5%
Karayevia oblongellum f, anormale	KOTG*	2	0,5%
Luticola acidoclinata Lange-Bertalot in Lange-Bertalot & Metzeltin	LACD*	2	0,5%
Navicula cryptocephala Kützing var, cryptocephala	NCRY*	2	0,5%
Navicula exilis Kützing	NEXI*	2	0,5%
Navicula gregaria Donkin var, gregaria	NGRE*	2	0,5%
Navicula lanceolata (Agardh) Ehrenberg var, lanceolata	NLAN*	2	0.5%
Navicula pseudoarvensis Hustedt	NPSA	2	0,5%
NITZSCHIA A,H, Hassall	NITZ	2	0,5%
Nitzschia subacicularis Hustedt in A,Schmidt et al,	NSUA*	2	0,5%
Planothidium frequentissimum (Lange-Bertalot) Lange-Bertalot var, frequentissimum	PLFR*	2	0.5%
Staurosira venter (Ehrenberg) Cleve & Moeller var, venter	SSVE*	2	0,5%
Tabellaria flocculosa (Roth) Kützing var, flocculosa	TFLO*	2	0,5%
Chamaepinnularia obsoleta (Hustedt) C,E,Wetzel et Ector	СНОВ	1	0,2%
Encyonema perpusillum (A, Cleve) D,G, Mann var, perpusillum	ENPE*	1	0,2%
Eunotia botuliformis Wild, Nörpel-Schempp & Lange-Bertalot	EBOT*	1	0,2%
EUNOTIA C,G, Ehrenberg	EUNO	1	0,2%
Fragilariforma virescens (Ralfs) Williams & Round var, virescens	FFVI*	1	0,2%
Hippodonta capitata (Ehr.) Lange-Bertalot, Metzeltin et Witkowski	HCAP*	1	0,2%
Nitzschia epithemoides var, disputata (Carter) Lange-Bertalot	NEDT*	1	0,2%
Nitzschia inconspicua Grunow	NINC*	1	0,2%
Pinnularia perirrorata Krammer	PPRI*	1	0,2%
PSAMMOTHIDIUM Bukhtiyarova & Round	PSMT	1	0,2%
Psammothidium ventrale (Krasske) Bukhtiyarova et Round	PVEN*	1	0,2%
Sellaphora saugerresii (Desm.) C.E. Wetzel & D.G. Mann in Wetzel et al.	SSGE*	1	0,2%
Semaphora saugerresii (Desiii,) C.E., weizei & D.G., Mann in weizei ei al.	SSGE	1	0,4/0

 $^{*\} Taxon\ contributif\ au\ calcul\ de\ l'IBD$

$CRA_AM - 2021$

Dénomination taxinomique (nom latin et auteur)	Code OMNIDIA*	Effectif	%
Platessa oblongella (Østrup) C,E, Wetzel, Lange-Bertalot & Ector	POBL*	294	72,2%
Achnanthidium minutissimum (Kützing) Czarnecki var, minutissimum	ADMI*	36	8,8%
Achnanthidium kranzii (Lange-Bertalot) Round & Bukhtiyarova	ADKR*	11	2,7%
Sellaphora nigri (De Not,) C,E, Wetzel et Ector comb, nov, emend,	SNIG*	5	1,2%
Gomphonema angustatum (Kützing) Rabenhorst var, angustatum	GANG*	4	1,0%
Gomphonema exilissimum (Grun,) Lange-Bertalot & Reichardt	GEXL*	4	1,0%
MAYAMAEA Lange-Bertalot	MAYA	4	1,0%
CHAMAEPINNULARIA Lange-Bertalot & Krammer	CHAM	3	0,7%
EUNOTIA C,G, Ehrenberg	EUNO	3	0,7%
Tabellaria flocculosa (Roth) Kützing var, flocculosa	TFLO*	3	0,7%
Eunotia rhomboidea Hustedt	ERHO*	2	0,5%
GOMPHONEMA C,G, Ehrenberg	GOMP	2	0,5%
Navicula cryptocephala Kützing var, cryptocephala	NCRY*	2	0,5%
Navicula veneta Kützing	NVEN*	2	0,5%
NITZSCHIA A,H, Hassall	NITZ	2	0,5%
Nitzschia gracilis Hantzsch var, gracilis	NIGR*	2	0,5%
Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot var, lanceola	PTLA*	2	0,5%
Platessa oblongella (Østrup) C,E, Wetzel, Lange-Bertalot & Ector f, anormale	POGT*	2	0.5%
Sellaphora atomoides (Grunow) Wetzel et Van de Vijver	SEAT*	2	0,5%
Simonsenia delognei Lange-Bertalot	SIDE*	2	0,5%
Tryblionella debilis Arnott ex O'Meara var, debilis	TDEB*	2	0,5%
Achnanthidium subatomoides (Hustedt) Monnier, Lange-Bertalot et Ector	ADSO*	1	0,2%
Chamaepinnularia evanida (Hustedt) Lange-Bertalot	CHEV*	1	0,2%
Diatomée anormale f, anormale	DEFO*	1	0,2%
FRAGILARIA H,C, Lyngbye	FRAG	1	0,2%
Fragilaria pectinalis (O,F, Müller) Lyngbye	FPEC*	1	0,2%
Fragilariforma virescens (Ralfs) Williams & Round var, virescens	FFVI*	1	0,2%
LUTICOLA D,G, Mann	LUTI	1	0,2%
Navicula rhynchocephala Kützing var, rhynchocephala	NRHY*	1	0,2%
Nitzschia epithemoides var, disputata (Carter) Lange-Bertalot	NEDT*	1	0,2%
Nitzschia lacuum Lange-Bertalot	NILA*	1	0,2%
Nitzschia pusilla (Kützing) Grunow emend Lange-Bertalot	NIPU*	1	0,2%
NUPELA W, Vyverman & P, Compere	NUPE	1	0,2%
PINNULARIA C,G, Ehrenberg	PINU	1	0,2%
Pinnularia obscura Krasske	POBS*	1	0,2%
Psammothidium helveticum (Hustedt) Bukhtiyarova et Round var, helveticum	PHEL*	1	0,2%
Pseudostaurosira elliptica (Schumann) Edlund, Morales & Spaulding	PSSE*	1	0,2%
Reimeria sinuata (Gregory) Kociolek & Stoermer	RSIN*	1	0,2%
Stauroforma exiguiformis (Lange-Bertalot) Flower Jones et Round	SEXG*	1	0,2%

^{*} Taxon contributif au calcul de l'IBD

$CRA_AM - 2022$

Dénomination taxinomique (nom latin et auteur)	Code OMNIDIA*	Effectif	%
Achnanthidium kranzii (Lange-Bertalot) Round & Bukhtiyarova	ADKR*	6	1,5%
Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	ADMI*	18	4,5%
Achnanthidium subatomoides (Hustedt) Monnier, Lange-Bertalot et Ector	ADSO*	13	3,3%
Cavinula cocconeiformis (Gregory ex Greville) Mann & Stickle in Round Crawf	CCOC*	1	0,3%
Cavinula variostriata (Krasske) Mann in Round & aL	CVVA*	1	0,3%
Chamaepinnularia evanida (Hustedt) Lange-Bertalot	CHEV*	5	1,3%
Cyclotella meduanae Germain	CMED*	1	0,3%
Cymbopleura naviculiformis (Auerswald) Krammer	CBNA*	4	1,0%
Encyonema perpusillum (A. Cleve) D.G. Mann var. perpusillum	ENPE*	3	0,8%
Eunotia bilunaris (Ehrenberg) Schaarschmidt var. bilunaris	EBLU*	1	0,3%
Eunotia botuliformis Wild, Nörpel-Schempp & Lange-Bertalot	EBOT*	4	1,0%
EUNOTIA C.G. Ehrenberg	EUNO	1	0,3%
Eunotia implicata Nörpel Lange-Bertalot & Alles	EIMP*	1	0,3%
Eunotia incisa Gregory var. incisa	EINC*	1	0,3%
Eunotia minor (Kützing) Grunow in Van Heurck	EMIN*	2	0,5%
Eunotia subarcuatoides Alles Nörpel & Lange-Bertalot in Alles et al.	ESUB*	1	0,3%
Fragilaria acidoclinata Lange-Bertalot & Hofmann	FACD*	2	0,5%
Fragilaria microvaucheriae C.E. Wetzel et Ector	FMIV	2	0,5%
Fragilaria tenera (W.Smith) Lange-Bertalot var. tenera	FTEN*	1	0,3%
GOMPHONEMA C.G. Ehrenberg	GOMP	6	1,5%
Gomphonema micropus Kützing var. micropus	GMIC*	2	0,5%
Gomphonema variscohercynicum Lange-Bertalot & Reichardt	GVAH	2	0,5%
Humidophila contenta (Grunow) Lowe, Kociolek, Johansen, Van de Vijver, La	HUCO*	3	0,8%
MAYAMAEA Lange-Bertalot	MAYA	31	7,8%
Meridion circulare (Greville) C.A. Agardh	MCIR*	2	0,5%
Navicula cryptocephala Kützing var. cryptocephala	NCRY*	2	0,5%
Navicula lanceolata (Agardh) Ehrenberg var. lanceolata	NLAN*	1	0,3%
Navicula rhynchocephala Kützing var. rhynchocephala	NRHY*	2	0,5%
Nitzschia acidoclinata Lange-Bertalot	NACD*	2	0,5%
NITZSCHIA A.H. Hassall	NITZ	4	1,0%
Nitzschia archibaldii Lange-Bertalot	NIAR*	1	0.3%
Nitzschia fruticosa Hustedt	NIFT*	1	0.3%
PINNULARIA C.G. Ehrenberg	PINU	4	1,0%
Pinnularia dornii Metzeltin	PDOR	2	0,5%
Pinnularia schoenfelderi Krammer	PSHO*	2	0,5%
Placoneis clementispronina Lange-Bertalot & Wojtal	PDMT*	2	0,5%
Planothidium frequentissimum (Lange-Bertalot) Lange-Bertalot var. frequentiss	PLFR*	3	0,8%
Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot var. lanceola	PTLA*	7	1,8%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector	POBL*	213	53,3%
Platessa oblongella (Østrup) C.E. Wetzet, Lange-Bertalot & Ector f. anormale	POGT*	1	0,3%
Pseudostaurosira alvareziae Cejudo-Figueras Morales & Ector	PALV*	6	1,5%
Pseudostaurostra awareztae Cejauo-Figueras Morates & Ector Pseudostaurostra smithii E. Morales & Ector	PSMH	2	
	SNIG*		0,5%
Sellaphora nigri (De Not.) C.E. Wetzel et Ector comb. nov. emend.	SPPU	2	0,5%
Sellaphora pseudopupula (Krasske) Lange-Bertalot		1	0,3%
Sellaphora rhombelliptica (Gerd Moser, Lange-Bertalot et Metzeltin) C.E. Wetze	SRHE*	8	2,0%
Staursforms originiformic (Lance Portalet) Flourer Lance et Bound	SSGE*	3 7	0,8%
Stauroforma exiguiformis (Lange-Bertalot) Flower Jones et Round	SEXG*	7	1,8%
Stauroneis kriegeri Patrick	STKR*	4	1,0%
Stauroneis thermicola (Boye-Petersen) Lund	STHE*	2	0,5%
STAUROSIRA (C.G. Ehrenberg) D.M. Williams & F.E. Round	STRS SSVE*	1	0,3%
Staurosira venter (Ehrenberg) Cleve & Moeller var. venter	SSVE*	1	0,3%
Surirella angusta Kützing var. angusta	SANG*	1	0,3%
Tabellaria flocculosa (Roth) Kützing var. flocculosa	TFLO*	1	0,3%

 $^{*\} Taxon\ contributif\ au\ calcul\ de\ l'IBD$

$CRA_AM - 2023$

Dénomination taxinomique (nom latin et auteur)	Code OMNIDIA*	Effectif	%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector	POBL*	302	74,9%
Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	ADMI*	11	2,7%
Navicula cryptocephala Kützing var. cryptocephala	NCRY*	11	2,7%
Eunotia minor (Kützing) Grunow in Van Heurck	EMIN*	9	2,2%
Nitzschia acidoclinata Lange-Bertalot	NACD*	8	2,0%
Nitzschia palea (Kützing) W.Smith var. palea	NPAL*	7	1,7%
Gomphonema exilissimum (Grun.) Lange-Bertalot & Reichardt	GEXL*	4	1,0%
MAYAMAEA Lange-Bertalot	MAYA	4	1,0%
Navicula lanceolata (Agardh) Ehrenberg var. lanceolata	NLAN*	4	1,0%
Nitzschia gracilis Hantzsch var. gracilis	NIGR*	4	1,0%
Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot var. lanceola	PTLA*	3	0,7%
Achnanthidium kranzii (Lange-Bertalot) Round & Bukhtiyarova	ADKR*	2	0,5%
Discostella woltereckii (Hustedt) Houk & Klee var. woltereckii	DWOL*	2	0,5%
Eunotia incisa Gregory var. incisa	EINC*	2	0,5%
FRAGILARIA H.C. Lyngbye	FRAG	2	0,5%
Gomphonema cymbelliclinum Reichardt & Lange-Bertalot	GCBC*	2	0,5%
HIPPODONTA Lange-Bertalot. Metzeltin & Witkowski	HIPO	2	0,5%
Nitzschia hantzschiana Rabenhorst var. hantzschiana	NHAN*	2	0,5%
Nitzschia parvula W.M.Smith	NPAR	2	0,5%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector f. anormale	POGT*	2	0,5%
Sellaphora nigri (De Not.) C.E. Wetzel et Ector comb. nov. emend.	SNIG*	2	0,5%
Stauroforma atomus (Hust.) Talgatti, C.E.Wetzel, E.Morales & Torgan	SFAT	2	0,5%
Achnanthidium subatomoides (Hustedt) Monnier, Lange-Bertalot et Ector	ADSO*	1	0,2%
CHAMAEPINNULARIA Lange-Bertalot & Krammer	CHAM	1	0,2%
Cyclotella meneghiniana Kützing	CMEN*	1	0,2%
Eunotia boreoalpina Lange-Bertalot & Nörpel-Schempp	EBOA	1	0,2%
Eunotia implicata Nörpel Lange-Bertalot & Alles	EIMP*	1	0,2%
Eunotia tenella (Grunow in Van Heurck) Hustedt in Schmidt & al var. tenella	ETEN*	1	0,2%
Frustulia crassinervia (Brebisson) Lange-Bertalot et Krammer	FCRS*	1	0,2%
Frustulia vulgaris (Thwaites) De Toni var. vulgaris	FVUL*	1	0,2%
Reimeria sinuata (Gregory) Kociolek & Stoermer	RSIN*	1	0,2%
Sellaphora atomoides (Grunow) Wetzel et Van de Vijver	SEAT*	1	0,2%
Sellaphora rhombelliptica (Gerd Moser, Lange-Bertalot et Metzeltin) C.E. Wetze	SRHE*	1	0,2%
Sellaphora saugerresii (Desm.) C.E. Wetzel & D.G. Mann in Wetzel et al.	SSGE*	1	0,2%
Stauroforma exiguiformis (Lange-Bertalot) Flower Jones et Round	SEXG*	1	0,2%
Stauroneis gracilis Ehrenberg	SGRC	1	0,2%

 $^{*\} Taxon\ contributif\ au\ calcul\ de\ l'IBD$

Dénomination taxinomique (nom latin et auteur)	Code OMNIDIA*	Effectif	%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector	POBL*	223	54,9%
Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	ADMI*	50	12,3%
Fragilaria famelica (Kützing) Lange-Bertalot var. famelica	FFAM*	33	8,1%
Staurosira venter (Ehrenberg) Cleve & Moeller var. venter	SSVE*	21	5,2%
Cocconeis placentula var. lineata (Ehrenberg) Van Heurck	CPLI*	17	4,2%
Stauroforma exiguiformis (Lange-Bertalot) Flower Jones et Round	SEXG*	13	3,2%
Achnanthidium kranzii (Lange-Bertalot) Round & Bukhtiyarova	ADKR*	7	1,7%
STAUROSIRA (C.G. Ehrenberg) D.M. Williams & F.E. Round	STRS	6	1,5%
Sellaphora seminulum (Grunow) D.G. Mann	SSEM*	4	1,0%
Eunotia exigua (Brébisson ex Kützing) Rabenhorst	EEXI*	3	0,7%
Karayevia oblongellum f. anormale	KOTG*	3	0,7%
CYMBELLA C.Agardh	CYMB	2	0,5%
Diatomée anormale f. anormale	DEFO*	2	0,5%
MAYAMAEA Lange-Bertalot	MAYA	2	0,5%
Navicula cryptocephala Kützing var. cryptocephala	NCRY*	2	0,5%
NAVICULA J.B.M. Bory de St. Vincent	NAVI	2	0,5%
Pinnularia perirrorata Krammer	PPRI*	2	0,5%
Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot var. lanceolatum	PTLA*	2	0,5%
Skabitschewskia peragalloi (Brun et Héribaud) Kulikovskiy et Lange-Bertalot	SPRG*	2	0,5%
Achnanthidium minutissimum f. anormale	ADMT*	1	0,2%
Brachysira neglectissima Lange-Bertalot	BNEG*	1	0,2%
Cocconeis euglypta Ehrenberg	CEUG*	1	0,2%
Encyonopsis cesatii (Rabenhorst) Krammer var. cesatii	ECES*	1	0,2%
Eunotia curtagrunowii Norpel-Schempp et Lange-Bertalot in Lange-Bertalot & Metzeltin	ECTG*	1	0,2%
Fragilariforma virescens (Ralfs) Williams & Round var. virescens	FFVI*	1	0,2%
Mayamaea permitis (Hustedt) Bruder & Medlin	MPMI*	1	0,2%
Psammothidium rossii (Hustedt) Bukhtiyarova et Round	PROS*	1	0,2%
Pseudostaurosira brevistriata (Grun.in Van Heurck) Williams & Round var. brevistriata	PSBR*	1	0,2%
STAUROSIRELLA D.M. Williams & F.E. Round emend Morales	STRL	1	0,2%

 $^{{}^*\} Taxon\ contributif\ au\ calcul\ de\ l'IBD$

Dénomination taxinomique (nom latin et auteur)	Code OMNIDIA*	Effectif	%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector	POBL*	158	39,0%
Fragilaria famelica (Kützing) Lange-Bertalot var. famelica	FFAM*	88	21,7%
Staurosira venter (Ehrenberg) Cleve & Moeller var. venter	SSVE*	40	9,9%
Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	ADMI*	28	6,9%
Achnanthidium kranzii (Lange-Bertalot) Round & Bukhtiyarova	ADKR*	17	4,2%
Stauroforma exiguiformis (Lange-Bertalot) Flower Jones et Round	SEXG*	16	4,0%
Diatomée anormale f. anormale	DEFO*	15	3,7%
GOMPHONEMA C.G. Ehrenberg	GOMP	10	2,5%
Gomphonema auritum A.Braun ex Kützing	GAUR	5	1,2%
Gomphonema angustatum (Kützing) Rabenhorst var. angustatum	GANG*	4	1,0%
Gomphonema exilissimum (Grun.) Lange-Bertalot & Reichardt	GEXL*	4	1,0%
Karayevia oblongellum f. anormale	KOTG*	3	0,7%
Nitzschia epithemoides var. disputata (Carter) Lange-Bertalot	NEDT*	3	0,7%
Brachysira microcephala (Grunow) Compère	BMIC*	2	0,5%
Encyonopsis cesatii (Rabenhorst) Krammer var. cesatii	ECES*	2	0,5%
Eunotia bilunaris (Ehrenberg) Schaarschmidt var. bilunaris	EBLU*	2	0,5%
Navicula cryptocephala Kützing var. cryptocephala	NCRY*	2	0,5%
BRACHYSIRA F.T. Kützing	BRAC	1	0,2%
Ctenophora pulchella (Ralfs ex Kütz.) Williams et Round var. pulchella	CTPU*	1	0,2%
Eunotia minor (Kützing) Grunow in Van Heurck	EMIN*	1	0,2%
Frustulia vulgaris (Thwaites) De Toni var. vulgaris	FVUL*	1	0,2%
Nitzschia filiformis (W.M.Smith) Van Heurck var. filiformis	NFIL*	1	0,2%
Nitzschia recta Hantzsch ex Rabenhorst	NREC*	1	0,2%

 $^{{}^*\} Taxon\ contributif\ au\ calcul\ de\ l'IBD$

Dénomination taxinomique (nom latin et auteur)	Code OMNIDIA*	Effectif	%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector	POBL*	113	27,8%
Fragilaria famelica (Kützing) Lange-Bertalot var. famelica	FFAM*	105	25,9%
Staurosira venter (Ehrenberg) Cleve & Moeller var. venter	SSVE*	78	19,2%
Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	ADMI*	23	5,7%
Stauroforma exiguiformis (Lange-Bertalot) Flower Jones et Round	SEXG*	20	4,9%
Diatomée anormale f. anormale	DEFO*	16	3,9%
GOMPHONEMA C.G. Ehrenberg	GOMP	6	1,5%
Gomphonema exilissimum (Grun.) Lange-Bertalot & Reichardt	GEXL*	5	1,2%
Fragilaria acidoclinata Lange-Bertalot & Hofmann	FACD*	4	1,0%
Brachysira neglectissima Lange-Bertalot	BNEG*	3	0,7%
FRAGILARIA H.C. Lyngbye	FRAG	3	0,7%
Ctenophora pulchella (Ralfs ex Kütz.) Williams et Round var. pulchella	CTPU*	2	0,5%
Frustulia vulgaris (Thwaites) De Toni var. vulgaris	FVUL*	2	0,5%
Pseudostaurosira sopotensis (Witkowski & Lange-Bert.) E. Morales, C.E. Wetzel & Ector	PSOT	2	0,5%
Achnanthidium daonense (Lange-Bertalot) Lange-Bertalot Monnier & Ector	ADDA^*	1	0,2%
Achnanthidium kranzii (Lange-Bertalot) Round & Bukhtiyarova	ADKR*	1	0,2%
Adlafia minuscula (Grunow) Lange-Bertalot var. minuscula	ADMS*	1	0,2%
CRATICULA A. Grunow	CRAT	1	0,2%
DIATOMA J.B.M. Bory de St. Vincent	DIAT	1	0,2%
Encyonopsis subminuta Krammer & Reichardt	ESUM*	1	0,2%
Eunotia exigua (Brébisson ex Kützing) Rabenhorst	EEXI*	1	0,2%
Eunotia incisa Gregory var. incisa	EINC*	1	0,2%
Fragilariforma bicapitata (A. Mayer) Williams & Round	FFBI*	1	0,2%
Gomphonema varioreduncum Jüttner, Ector, Reichardt, Van de Vijver & Cox	GVRD	1	0,2%
Mayamaea permitis (Hustedt) Bruder & Medlin	MPMI*	1	0,2%
Navicula cryptocephala Kützing var. cryptocephala	NCRY*	1	0,2%
Navicula rhynchocephala Kützing var. rhynchocephala	NRHY*	1	0,2%
Navicula vilaplanii (Lange-Bert. & Sabater) Lange-Bertalot & Sabater	NVIP*	1	0,2%
Nitzschia acidoclinata Lange-Bertalot	NACD*	1	0,2%
Nitzschia dissipata subsp. dissipata (Kützing) Grunow var. dissipata	NDIS*	1	0,2%
Nitzschia epithemoides var. disputata (Carter) Lange-Bertalot	NEDT*	1	0,2%
Pinnularia obscura Krasske	POBS*	1	0,2%
Pinnularia perirrorata Krammer	PPRI*	1	0,2%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector f. anormale	POGT*	1	0,2%
SELLAPHORA C. Mereschkowsky	SELL	1	0,2%
Sellaphora pupula (Kützing) Mereschkowksy var. pupula	SPUP*	1	0,2%
Tabellaria flocculosa (Roth) Kützing var. flocculosa	TFLO*	1	0,2%
Ulnaria ulna (Nitzsch) Compère var. ulna	UULN*	1	0,2%

^{*} Taxon contributif au calcul de l'IBD

Dénomination taxinomique (nom latin et auteur)	Code OMNIDIA*	Effectif	%
Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	ADMI*	24	5,9%
Achnanthidium subatomoides (Hustedt) Monnier, Lange-Bertalot et Ector	ADSO*	1	0,2%
Brachysira microcephala (Grunow) Compère	BMIC*	1	0,2%
Caloneis lancettula (Schulz) Lange-Bertalot & Witkowski	CLCT*	1	0,2%
Cyclostephanos dubius (Fricke) Round	CDUB*	1	0,2%
Diatomée anormale f. anormale	DEFO*	7	1,7%
Encyonopsis cesatii (Rabenhorst) Krammer var. cesatii	ECES*	1	0,2%
Encyonopsis subminuta Krammer & Reichardt	ESUM*	1	0,2%
Fragilaria acidoclinata Lange-Bertalot & Hofmann	FACD*	2	0,5%
Fragilaria famelica (Kützing) Lange-Bertalot var. famelica	FFAM*	56	13,8%
Fragilaria microvaucheriae C.E. Wetzel et Ector	FMIV	1	0,2%
Gomphonema angustatum (Kützing) Rabenhorst var. angustatum	GANG*	12	3,0%
GOMPHONEMA C.G. Ehrenberg	GOMP	3	0,7%
Gomphonema exilissimum (Grun.) Lange-Bertalot & Reichardt	GEXL*	34	8,4%
Mayamaea permitis (Hustedt) Bruder & Medlin	MPMI*	1	0,2%
Pinnularia microstauron var. rostrata Krammer	PMRO	1	0,2%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector	POBL*	127	31,4%
Sellaphora nigri (De Not.) C.E. Wetzel et Ector comb. nov. emend.	SNIG*	1	0,2%
Sellaphora saugerresii (Desm.) C.E. Wetzel & D.G. Mann in Wetzel et al.	SSGE*	2	0,5%
Stauroforma exiguiformis (Lange-Bertalot) Flower Jones et Round	SEXG*	17	4,2%
Stauroneis kriegeri Patrick	STKR*	1	0,2%
Staurosira venter (Ehrenberg) Cleve & Moeller var. venter	SSVE*	110	27,2%

 $^{*\} Taxon\ contributif\ au\ calcul\ de\ l'IBD$

Dénomination taxinomique (nom latin et auteur)	Code OMNIDIA*	Effectif	%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector	POBL*	171	41,6%
Staurosira venter (Ehrenberg) Cleve & Moeller var. venter	SSVE*	54	13,1%
Gomphonema exilissimum (Grun.) Lange-Bertalot & Reichardt	GEXL*	39	9,5%
Fragilaria famelica (Kützing) Lange-Bertalot var. famelica	FFAM*	38	9,2%
Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	ADMI*	34	8,3%
Pseudostaurosira trainorii Morales	PTRN	15	3,6%
Stauroforma exiguiformis (Lange-Bertalot) Flower Jones et Round	SEXG*	15	3,6%
Gomphonema angustatum (Kützing) Rabenhorst var. angustatum	GANG*	6	1,5%
Nitzschia epithemoides var. disputata (Carter) Lange-Bertalot	NEDT*	6	1,5%
Fragilaria acidoclinata Lange-Bertalot & Hofmann	FACD*	4	1,0%
Achnanthidium kranzii (Lange-Bertalot) Round & Bukhtiyarova	ADKR*	3	0,7%
Eunotia exigua (Brébisson ex Kützing) Rabenhorst	EEXI*	3	0,7%
GOMPHONEMA C.G. Ehrenberg	GOMP	3	0,7%
Fragilaria bicapitata A. Mayer var. bicapitata	FBIC*	2	0,5%
Nitzschia recta Hantzsch ex Rabenhorst	NREC*	2	0,5%
Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot var. lanceolatum	PTLA*	2	0,5%
SELLAPHORA C. Mereschkowsky	SELL	2	0,5%
Sellaphora nigri (De Not.) C.E. Wetzel et Ector comb. nov. emend.	SNIG*	2	0,5%
Ulnaria biceps (Kützing) Compère	UBIC*	2	0,5%
Brachysira microcephala (Grunow) Compère	BMIC*	1	0,2%
Cocconeis lineata Ehrenberg	CLNT*	1	0,2%
Diatoma moniliformis f. anormale	DMOT*	1	0,2%
Eolimna minima Grunow) Lange-Bertalot	EOMI*	1	0,2%
Eunotia botuliformis Wild, Nörpel-Schempp & Lange-Bertalot	EBOT*	1	0,2%
Gomphonema auritum A.Braun ex Kützing	GAUR	1	0,2%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector f. anormale	POGT*	1	0,2%
Stauroneis kriegeri Patrick	STKR*	1	0,2%

 $^{*\} Taxon\ contributif\ au\ calcul\ de\ l'IBD$

Dénomination taxinomique (nom latin et auteur)	Code OMNIDIA*	Effectif	%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector	POBL*	242	60,0%
Fragilaria famelica (Kützing) Lange-Bertalot var. famelica	FFAM*	41	10,2%
Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	ADMI*	29	7,2%
Fragilaria gracilis Østrup	FGRA*	15	3,7%
GOMPHONEMA C.G. Ehrenberg	GOMP	12	3,0%
Stauroforma exiguiformis (Lange-Bertalot) Flower Jones et Round	SEXG*	9	2,2%
Achnanthidium kranzii (Lange-Bertalot) Round & Bukhtiyarova	ADKR*	7	1,7%
Chamaepinnularia evanida (Hustedt) Lange-Bertalot	CHEV*	7	1,7%
Encyonopsis cesatii (Rabenhorst) Krammer var. cesatii	ECES*	5	1,2%
Eolimna rhombelliptica Moser Lange-Bertalot & Metzeltin	EORH*	5	1,2%
Eunotia exigua (Brébisson ex Kützing) Rabenhorst	EEXI*	5	1,2%
Achnanthidium subatomoides (Hustedt) Monnier, Lange-Bertalot et Ector	ADSO*	4	1,0%
Karayevia oblongellum f. anormale	KOTG*	4	1,0%
Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot var. lanceolatum	PTLA*	3	0,7%
Diatomée anormale f. anormale	DEFO*	2	0,5%
ENCYONOPSIS Krammer	ENCP	2	0,5%
Gomphonema parvulum var. parvulum f. parvulum (Kützing) Kützing	GPAR*	2	0,5%
Gomphonema utae Lange-Bertalot & Reichardt	GUTA*	2	0,5%
Eolimna minima Grunow) Lange-Bertalot	EOMI*	1	0,2%
Navicula cryptocephala Kützing var. cryptocephala	NCRY*	1	0,2%
Navicula rhynchocephala Kützing var. rhynchocephala	NRHY*	1	0,2%
Nitzschia recta Hantzsch ex Rabenhorst	NREC*	1	0,2%
Nitzschia rectiformis Hustedt	NRFO	1	0,2%
Pseudostaurosira alvareziae Cejudo-Figueras Morales & Ector	PALV*	1	0,2%
Sellaphora seminulum (Grunow) D.G. Mann	SSEM*	1	0,2%

 $^{{}^*\} Taxon\ contributif\ au\ calcul\ de\ l'IBD$

Dénomination taxinomique (nom latin et auteur)	Code OMNIDIA*	Effectif	%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector	POBL*	252	62,5%
Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	ADMI*	48	11,9%
Fragilaria famelica (Kützing) Lange-Bertalot var. famelica	FFAM*	25	6,2%
Gomphonema angustatum (Kützing) Rabenhorst var. angustatum	GANG*	20	5,0%
Staurosira venter (Ehrenberg) Cleve & Moeller var. venter	SSVE*	19	4,7%
Nitzschia palea (Kützing) W.Smith var. palea	NPAL*	7	1,7%
Brachysira microcephala (Grunow) Compère	BMIC*	6	1,5%
Stauroforma exiguiformis (Lange-Bertalot) Flower Jones et Round	SEXG*	5	1,2%
Diatomée anormale f. anormale	DEFO*	4	1,0%
GOMPHONEMA C.G. Ehrenberg	GOMP	4	1,0%
Gomphonema auritum A.Braun ex Kützing	GAUR	3	0,7%
Karayevia oblongellum f. anormale	KOTG*	3	0,7%
Nitzschia acidoclinata Lange-Bertalot	NACD*	3	0,7%
Sellaphora atomoides (Grunow) Wetzel et Van de Vijver	SEAT*	2	0,5%
Eunotia bilunaris (Ehrenberg) Schaarschmidt var. bilunaris	EBLU*	1	0,2%
Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot var. lanceolatum	PTLA*	1	0,2%

 $^{*\} Taxon\ contributif\ au\ calcul\ de\ l'IBD$

Dénomination taxinomique (nom latin et auteur)	Code OMNIDIA*	Effectif	%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector	POBL*	143	34,9%
Fragilaria famelica (Kützing) Lange-Bertalot var. famelica	FFAM*	121	29,5%
Staurosira venter (Ehrenberg) Cleve & Moeller var. venter	SSVE*	44	10,7%
Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	ADMI*	27	6,6%
Diatomée anormale f. anormale	DEFO*	9	2,2%
Gomphonema angustatum (Kützing) Rabenhorst var. angustatum	$GANG^*$	6	1,5%
Gomphonema exilissimum (Grun.) Lange-Bertalot & Reichardt	GEXL*	5	1,2%
FRAGILARIA H.C. Lyngbye	FRAG	4	1,0%
Nitzschia lacuum Lange-Bertalot	NILA*	4	1,0%
Navicula radiosa Kützing var. radiosa	NRAD*	3	0,7%
Stauroforma exiguiformis (Lange-Bertalot) Flower Jones et Round	SEXG*	3	0,7%
Achnanthidium subatomoides (Hustedt) Monnier, Lange-Bertalot et Ector	ADSO*	2	0,5%
Ctenophora pulchella (Ralfs ex Kütz.) Williams et Round var. pulchella	CTPU*	2	0,5%
Diatoma tenuis C. Agardh	DITE*	2	0,5%
Discostella pseudostelligera (Hustedt) Houk & Klee emend. Genkal	DPSG*	2	0,5%
Encyonopsis cesatii (Rabenhorst) Krammer var. cesatii	ECES*	2	0,5%
Eunotia intermedia (Krasske ex Hustedt) Nörpel & Lange-Bertalot	EUIN*	2	0,5%
Fallacia vitrea (Østrup) D.G. Mann	FVTR	2	0,5%
Gomphonema parvulius Lange-Bertalot & Reichardt	GPVL^*	2	0,5%
Navicula cryptocephala Kützing var. cryptocephala	NCRY*	2	0,5%
Nitzschia acidoclinata Lange-Bertalot	NACD*	2	0,5%
NITZSCHIA A.H. Hassall	NITZ	2	0,5%
Nitzschia gracilis Hantzsch var. gracilis	NIGR*	2	0,5%
Nitzschia media Hantzsch.	NIME*	2	0,5%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector f. anormale	POGT*	2	0,5%
Sellaphora nigri (De Not.) C.E. Wetzel et Ector comb. nov. emend.	SNIG*	2	0,5%
Brachysira neglectissima Lange-Bertalot	BNEG*	1	0,2%
Encyonopsis subminuta Krammer & Reichardt	ESUM*	1	0,2%
EUNOTIA C.G. Ehrenberg	EUNO	1	0,2%
Eunotia exigua (Brébisson ex Kützing) Rabenhorst	EEXI*	1	0,2%
Fragilaria tenera (W.Smith) Lange-Bertalot var. tenera	FTEN*	1	0,2%
Fragilariforma bicapitata (A.Mayer) Williams & Round	FFBI*	1	0,2%
Frustulia vulgaris (Thwaites) De Toni var. vulgaris	FVUL*	1	0,2%
Nitzschia archibaldii Lange-Bertalot	NIAR*	1	0,2%
Nitzschia fruticosa Hustedt	NIFT*	1	0,2%
Surirella amphioxys W.Smith	SAPH*	1	0,2%
Ulnaria ulna (Nitzsch) Compère var. ulna	UULN*	1	0,2%

 $^{^{*}}$ Taxon contributif au calcul de l'IBD

Dénomination taxinomique (nom latin et auteur)	Code OMNIDIA*	Effectif	%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector	POBL*	255	62,7%
Gomphonema angustatum (Kützing) Rabenhorst var. angustatum	GANG*	31	7,6%
Fragilaria famelica (Kützing) Lange-Bertalot var. famelica	FFAM*	29	7,1%
Staurosira venter (Ehrenberg) Cleve & Moeller var. venter	SSVE*	25	6,1%
Gomphonema exilissimum (Grun.) Lange-Bertalot & Reichardt	GEXL*	20	4,9%
Stauroforma exiguiformis (Lange-Bertalot) Flower Jones et Round	SEXG*	15	3,7%
Brachysira microcephala (Grunow) Compère	BMIC*	3	0,7%
Diatomée anormale f. anormale	DEFO*	3	0,7%
Nitzschia palea (Kützing) W.Smith var. palea	NPAL*	3	0,7%
Encyonopsis cesatii (Rabenhorst) Krammer var. cesatii	ECES*	2	0,5%
Eunotia exigua (Brébisson ex Kützing) Rabenhorst	EEXI*	2	0,5%
Gomphonema lagenula Kützing	GLGN*	2	0,5%
Navicula gregaria Donkin var. gregaria	NGRE*	2	0,5%
Nitzschia lacuum Lange-Bertalot	NILA*	2	0,5%
Nitzschia linearis (Agardh) W.M.Smith var. linearis	NLIN*	2	0,5%
Stauroneis kriegeri Patrick	STKR*	2	0,5%
Achnanthidium catenatum (Bily & Marvan) Lange-Bertalot	ADCT*	1	0,2%
COCCONEIS C.G. Ehrenberg	COCO	1	0,2%
Fragilaria acidoclinata Lange-Bertalot & Hofmann	FACD*	1	0,2%
Navicula cryptocephala Kützing var. cryptocephala	NCRY*	1	0,2%
Navicula escambia (Patrick) Metzeltin & Lange-Bertalot	NESC*	1	0,2%
Navicula lanceolata (Agardh) Ehrenberg var. lanceolata	NLAN*	1	0,2%
Navicula veneta Kützing	NVEN*	1	0,2%
Nitzschia archibaldii Lange-Bertalot	NIAR*	1	0,2%
Placoneis clementispronina Lange-Bertalot & Wojtal	PDMT*	1	0,2%

 $^{{}^*\} Taxon\ contributif\ au\ calcul\ de\ l'IBD$

CRA_RES_AM - 2023

Dénomination taxinomique (nom latin et auteur)	Code OMNIDIA*	Effectif	%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector	POBL*	306	75,0%
Staurosira venter (Ehrenberg) Cleve & Moeller var. venter	SSVE*	27	6,6%
Fragilaria famelica (Kützing) Lange-Bertalot var. famelica	FFAM*	8	2,0%
Gomphonema angustatum (Kützing) Rabenhorst var. angustatum	GANG*	8	2,0%
Stauroforma exiguiformis (Lange-Bertalot) Flower Jones et Round	SEXG*	8	2,0%
Sellaphora nigri (De Not.) C.E. Wetzel et Ector comb. nov. emend.	SNIG*	6	1,5%
Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	ADMI*	5	1,2%
Pseudostaurosira trainorii Morales	PTRN	5	1,2%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector f. anormale	POGT*	4	1,0%
Eunotia exigua (Brébisson ex Kützing) Rabenhorst	EEXI*	3	0,7%
Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot var. lanceolatum	PTLA*	3	0,7%
Chamaepinnularia evanida (Hustedt) Lange-Bertalot	CHEV*	2	0,5%
Eolimna minima Grunow) Lange-Bertalot	EOMI*	2	0,5%
Eunotia minor (Kützing) Grunow in Van Heurck	EMIN*	2	0,5%
Fragilaria nevadensis Linares-Cuesta et Sanchez-Castillo	FNEV	2	0,5%
Gomphonema parvulum var. parvulum f. parvulum (Kützing) Kützing	GPAR*	2	0,5%
Navicula rhynchocephala Kützing var. rhynchocephala	NRHY*	2	0,5%
Nitzschia epithemoides var. disputata (Carter) Lange-Bertalot	NEDT*	2	0,5%
Nitzschia microcephala Grunow in Cleve & Moller var. microcephala	NMIC*	2	0,5%
Sellaphora rhombelliptica (Gerd Moser, Lange-Bertalot et Metzeltin) C.E. Wetzel et Ect	« SRHE*	2	0,5%
Achnanthidium kranzii (Lange-Bertalot) Round & Bukhtiyarova	ADKR*	1	0,2%
Achnanthidium subatomoides (Hustedt) Monnier, Lange-Bertalot et Ector	ADSO*	1	0,2%
Eunotia botuliformis Wild, Nörpel-Schempp & Lange-Bertalot	EBOT*	1	0,2%
Navicula vilaplanii (Lange-Bert. & Sabater) Lange-Bertalot & Sabater	NVIP*	1	0,2%
Placoneis clementispronina Lange-Bertalot & Wojtal	PDMT*	1	0,2%
Tabellaria flocculosa (Roth) Kützing var. flocculosa	TFLO*	1	0,2%
Ulnaria biceps (Kützing) Compère	UBIC*	1	0,2%

^{*} Taxon contributif au calcul de l'IBD

$CRA_RES_AV-2019$

Dénomination taxinomique (nom latin et auteur)	Code OMNIDIA*	Effectif	%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector	POBL*	293	71,3%
Fragilaria famelica (Kützing) Lange-Bertalot var. famelica	FFAM*	36	8,8%
Staurosira venter (Ehrenberg) Cleve & Moeller var. venter	SSVE*	19	4,6%
Stauroforma exiguiformis (Lange-Bertalot) Flower Jones et Round	SEXG*	15	3,6%
Diatomée anormale f. anormale	DEFO*	13	3,2%
Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	ADMI*	9	2,2%
Fragilaria acidoclinata Lange-Bertalot & Hofmann	FACD*	5	1,2%
Karayevia oblongellum f. anormale	KOTG*	5	1,2%
Gomphonema exilissimum (Grun.) Lange-Bertalot & Reichardt	GEXL*	3	0,7%
Encyonopsis cesatii (Rabenhorst) Krammer var. cesatii	ECES*	2	0,5%
Gomphonema angustatum (Kützing) Rabenhorst var. angustatum	GANG*	2	0,5%
PINNULARIA C.G. Ehrenberg	PINU	2	0,5%
STAUROSIRA (C.G. Ehrenberg) D.M. Williams & F.E. Round	STRS	2	0,5%
Brachysira neglectissima Lange-Bertalot	BNEG*	1	0,2%
Fragilaria bicapitata A. Mayer var. bicapitata	FBIC*	1	0,2%
Frustulia vulgaris (Thwaites) De Toni var. vulgaris	FVUL*	1	0,2%
Navicula gregaria Donkin var. gregaria	NGRE*	1	0,2%
Stauroneis kriegeri Patrick	STKR*	1	0,2%

^{*} Taxon contributif au calcul de l'IBD

$CRA_RES_AV-2020$

Dénomination taxinomique (nom latin et auteur)	Code OMNIDIA*	Effectif	%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector	POBL*	351	87,5%
Fragilaria famelica (Kützing) Lange-Bertalot var. famelica	FFAM*	9	2,2%
Staurosira venter (Ehrenberg) Cleve & Moeller var. venter	SSVE*	9	2,2%
Stauroforma exiguiformis (Lange-Bertalot) Flower Jones et Round	SEXG*	5	1,2%
Achnanthidium kranzii (Lange-Bertalot) Round & Bukhtiyarova	ADKR*	4	1,0%
Karayevia oblongellum f. anormale	KOTG*	4	1,0%
Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	ADMI*	2	0,5%
Encyonopsis subminuta Krammer & Reichardt	ESUM*	2	0,5%
Fragilaria microvaucheriae C.E. Wetzel et Ector	FMIV	2	0,5%
Gomphonema angustatum (Kützing) Rabenhorst var. angustatum	GANG*	2	0,5%
Navicula cryptocephala Kützing var. cryptocephala	NCRY*	2	0,5%
Nitzschia lacuum Lange-Bertalot	NILA*	2	0,5%
Eolimna minima (Grunow) Lange-Bertalot f. anormale	EOMT*	1	0,2%
Eunotia incisa Gregory var. incisa	EINC*	1	0,2%
Eunotia minor (Kützing) Grunow in Van Heurck	EMIN*	1	0,2%
Frustulia weinholdii Hustedt	FWEI*	1	0,2%
Navicula escambia (Patrick) Metzeltin & Lange-Bertalot	NESC*	1	0,2%
Navicula lanceolata (Agardh) Ehrenberg var. lanceolata	NLAN*	1	0,2%
Planothidium frequentissimum (Lange-Bertalot) Lange-Bertalot var. frequentissimum	PLFR*	1	0,2%

 $^{*\} Taxon\ contributif\ au\ calcul\ de\ l'IBD$

Dénomination taxinomique (nom latin et auteur)	Code OMNIDIA*	Effectif	%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector	POBL*	373	91,9%
Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	ADMI*	6	1,5%
Mayamaea permitis (Hustedt) Bruder & Medlin	MPMI*	4	1,0%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector f. anormale	POGT*	4	1,0%
Sellaphora saugerresii (Desm.) C.E. Wetzel & D.G. Mann in Wetzel et al.	SSGE*	4	1,0%
FRAGILARIA H.C. Lyngbye	FRAG	3	0,7%
Chamaepinnularia evanida (Hustedt) Lange-Bertalot	CHEV*	2	0,5%
Cocconeis lineata Ehrenberg	CLNT*	2	0,5%
Simonsenia delognei Lange-Bertalot	SIDE*	2	0,5%
Eunotia bilunaris (Ehrenberg) Schaarschmidt var. bilunaris	EBLU*	1	0,2%
Eunotia exigua (Brébisson ex Kützing) Rabenhorst	EEXI*	1	0,2%
Sellaphora rhombelliptica (Gerd Moser, Lange-Bertalot et Metzeltin) C.E. Wetzel et Ecto	SRHE*	1	0,2%
Stauroneis parathermicola Lange-Bertalot in Hofman Werum & Lange-Bertalot	SPTH	1	0,2%
Staurosira venter (Ehrenberg) Cleve & Moeller var. venter	SSVE*	1	0,2%
Tabellaria flocculosa (Roth) Kützing var. flocculosa	TFLO*	1	0,2%

^{*} Taxon contributif au calcul de l'IBD

$CRA_RES_AV-2022$

Dénomination taxinomique (nom latin et auteur)	Code OMNIDIA*	Effectif	%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector	POBL*	268	66,0%
Cocconeis lineata Ehrenberg	CLNT*	49	12,1%
Staurosira venter (Ehrenberg) Cleve & Moeller var. venter	SSVE*	18	4,4%
Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	ADMI*	9	2,2%
Fragilaria famelica (Kützing) Lange-Bertalot var. famelica	FFAM*	8	2,0%
Stauroforma exiguiformis (Lange-Bertalot) Flower Jones et Round	SEXG*	8	2,0%
Navicula lanceolata (Agardh) Ehrenberg var. lanceolata	NLAN*	5	1,2%
Chamaepinnularia evanida (Hustedt) Lange-Bertalot	CHEV*	3	0,7%
Gomphonema angustatum (Kützing) Rabenhorst var. angustatum	GANG*	3	0,7%
Nitzschia rectiformis Hustedt	NRFO	3	0,7%
Sellaphora nigri (De Not.) C.E. Wetzel et Ector comb. nov. emend.	SNIG*	3	0,7%
Chamaepinnularia obsoleta (Hustedt) C.E. Wetzel et Ector	СНОВ	2	0,5%
Encyonema minutiforme Krammer var. minutiforme	ENMF	2	0,5%
Fragilaria microvaucheriae C.E. Wetzel et Ector	FMIV	2	0,5%
GOMPHONEMA C.G. Ehrenberg	GOMP	2	0,5%
Stauroneis kriegeri Patrick	STKR*	2	0,5%
STAUROSIRA (C.G. Ehrenberg) D.M. Williams & F.E. Round	STRS	2	0,5%
Tryblionella debilis Arnott ex O'Meara var. debilis	TDEB*	2	0,5%
Ctenophora pulchella (Ralfs ex Kütz.) Williams et Round var. pulchella	CTPU*	1	0,2%
Encyonema neogracile Krammer var. neogracile	ENNG*	1	0,2%
Eunotia implicata Nörpel Lange-Bertalot & Alles	EIMP*	1	0,2%
Eunotia minor (Kützing) Grunow in Van Heurck	EMIN*	1	0,2%
Eunotia subarcuatoides Alles Nörpel & Lange-Bertalot in Alles et al.	ESUB*	1	0,2%
Eunotia tenella (Grunow in Van Heurck) Hustedt in Schmidt & al var. tenella	ETEN*	1	0,2%
Fragilariforma bicapitata (A.Mayer) Williams & Round	FFBI*	1	0,2%
Gomphonema exilissimum (Grun.) Lange-Bertalot & Reichardt	GEXL*	1	0,2%
Hippodonta capitata (Ehr.) Lange-Bertalot, Metzeltin et Witkowski	HCAP*	1	0,2%
Mayamaea permitis (Hustedt) Bruder & Medlin	MPMI*	1	0,2%
Nitzschia linearis (Agardh) W.M.Smith var. linearis	NLIN*	1	0,2%
Pinnularia schoenfelderi Krammer	PSHO*	1	0,2%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector f. anormale	POGT*	1	0,2%
Skabitschewskia peragalloi (Brun et Héribaud) Kulikovskiy et Lange-Bertalot	SPRG*	1	0,2%
Surirella brebissonii var. kuetzingii Krammer et Lange-Bertalot	SBKU*	1	0,2%

 $^{*\} Taxon\ contributif\ au\ calcul\ de\ l'IBD$

$CRA_RES_AV-2023$

Dénomination taxinomique (nom latin et auteur)	Code OMNIDIA*	Effectif	%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector	POBL*	198	48,4%
Staurosira venter (Ehrenberg) Cleve & Moeller var. venter	SSVE*	40	9,8%
Stauroforma exiguiformis (Lange-Bertalot) Flower Jones et Round	SEXG*	28	6,8%
Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	ADMI*	26	6,4%
Fragilaria famelica (Kützing) Lange-Bertalot var. famelica	FFAM*	21	5,1%
Fragilaria microvaucheriae C.E. Wetzel et Ector	FMIV	7	1,7%
Achnanthidium subatomoides (Hustedt) Monnier, Lange-Bertalot et Ector	ADSO*	6	1,5%
Eunotia exigua (Brébisson ex Kützing) Rabenhorst	EEXI*	4	1,0%
Fragilaria gracilis Østrup	FGRA*	4	1,0%
Gomphonema exilissimum (Grun.) Lange-Bertalot & Reichardt	GEXL*	4	1,0%
Navicula escambia (Patrick) Metzeltin & Lange-Bertalot	NESC*	4	1,0%
Navicula vilaplanii (Lange-Bert. & Sabater) Lange-Bertalot & Sabater	NVIP*	4	1,0%
Platessa oblongella (Østrup) C.E. Wetzel, Lange-Bertalot & Ector f. anormale	POGT*	4	1,0%
Sellaphora nigri (De Not.) C.E. Wetzel et Ector comb. nov. emend.	SNIG*	4	1,0%
Ctenophora pulchella (Ralfs ex Kütz.) Williams et Round var. pulchella	CTPU*	3	0,7%
EUNOTIA C.G. Ehrenberg	EUNO	3	0,7%
Adlafia bryophila (Petersen) Lange-Bertalot in Moser & al.	ABRY*	2	0,5%
Eunotia incisa Gregory var. incisa	EINC*	2	0,5%
Eunotia minor (Kützing) Grunow in Van Heurck	EMIN*	2	0.5%
Eunotia tenella (Grunow in Van Heurck) Hustedt in Schmidt & al var. tenella	ETEN*	2	0,5%
Melosira varians Agardh	MVAR*	2	0,5%
Navicula rhynchocephala Kützing var. rhynchocephala	NRHY*	2	0,5%
Nitzschia lacuum Lange-Bertalot	NILA*	2	0,5%
Nitzschia tacuam Eunge-Behalot Nitzschia recta Hantzsch ex Rabenhorst	NREC*	2	0,5%
Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot var. lanceolatum	PTLA*	2	0,5%
Sellaphora davoutiana D. Heudre, C.E. Wetzel & L. Ector	SDVO	2	0,5%
STAUROSIRELLA D.M. Williams & F.E. Round emend Morales	STRL TFLO*	2	0,5%
Tabellaria flocculosa (Roth) Kützing var. flocculosa		2	0,5%
AMPHORA C.G. Ehrenberg ex F.T. Kützing	AMPH DDDE*	1	0,2%
Brachysira brebissonii Ross in Hartley	BBRE*	1	0,2%
Brachysira microcephala (Grunow) Compère	BMIC*	1	0,2%
Chamaepinnularia evanida (Hustedt) Lange-Bertalot	CHEV*	1	0,2%
CHAMAEPINNULARIA Lange-Bertalot & Krammer	CHAM	1	0,2%
Cocconeis euglypta Ehrenberg	CEUG*	1	0,2%
Cocconeis lineata Ehrenberg	CLNT*	1	0,2%
Eunotia biconstricta (Grunow) Lange-Bertalot	EBCS	1	0,2%
Eunotia botuliformis Wild, Nörpel-Schempp & Lange-Bertalot	EBOT*	1	0,2%
Eunotia implicata Nörpel Lange-Bertalot & Alles	EIMP*	1	0,2%
FRAGILARIA H.C. Lyngbye	FRAG	1	0,2%
Fragilariforma bicapitata (A.Mayer) Williams & Round	FFBI*	1	0,2%
Frustulia vulgaris (Thwaites) De Toni var. vulgaris	FVUL*	1	0,2%
Kolbesia suchlandtii (Hustedt) Kingston	KSUC*	1	0,2%
Mayamaea permitis (Hustedt) Bruder & Medlin	MPMI*	1	0,2%
Meridion circulare var. constrictum (Ralfs) Van Heurck	MCCO*	1	0,2%
Navicula lanceolata (Agardh) Ehrenberg var. lanceolata	NLAN*	1	0,2%
Nitzschia acidoclinata Lange-Bertalot	NACD*	1	0,2%
Nitzschia fonticola Grunow in Cleve et Möller var. fonticola	NFON*	1	0,2%
Nitzschia media Hantzsch.	NIME*	1	0,2%
Pinnularia perirrorata Krammer	PPRI*	1	0,2%
Psammothidium ventrale (Krasske) Bukhtiyarova et Round	PVEN*	1	0,2%
PSEUDOSTAUROSIRA (Grunow) D.M. Williams & F.E. Round	PSST	1	0,2%
1 SECDOSTACIOSITA (Granow) D.M. w tittams & F.E. Roana			
Rossithidium anastasiae (Kaczmarska) Potapova	RANA*	1	0,2%

 $^{*\} Taxon\ contributif\ au\ calcul\ de\ l'IBD$